摘要:
A solder-top enhanced semiconductor device is proposed for packaging. The solder-top device includes a device die with a top metal layer patterned into contact zones and contact enhancement zones. At least one contact zone is electrically connected to at least one contact enhancement zone. Atop each contact enhancement zone is a solder layer for an increased composite thickness thus lowered parasitic impedance. Where the top metal material can not form a uniform good electrical bond with the solder material, the device die further includes an intermediary layer sandwiched between and forming a uniform electrical bond with the top metal layer and the solder layer. A method for making the solder-top device includes: a) Lithographically patterning the top metal layer into the contact zones and the contact enhancement zones. b) Forming a solder layer atop each of the contact enhancement zones using a stencil process for an increased composite thickness.
摘要:
A solder-top enhanced semiconductor device is proposed for packaging. The solder-top device includes a device die with a top metal layer patterned into contact zones and contact enhancement zones. At least one contact zone is electrically connected to at least one contact enhancement zone. Atop each contact enhancement zone is a solder layer for an increased composite thickness thus lowered parasitic impedance. Where the top metal material can not form a uniform good electrical bond with the solder material, the device die further includes an intermediary layer sandwiched between and forming a uniform electrical bond with the top metal layer and the solder layer. A method for making the solder-top device includes lithographically patterning the top metal layer into the contact zones and the contact enhancement zones; then forming a solder layer atop each of the contact enhancement zones using a stencil process for an increased composite thickness.
摘要:
A solder-top enhanced semiconductor device is proposed for packaging. The solder-top device includes a device die with a top metal layer patterned into contact zones and contact enhancement zones. At least one contact zone is electrically connected to at least one contact enhancement zone. Atop each contact enhancement zone is a solder layer for an increased composite thickness thus lowered parasitic impedance. Where the top metal material can not form a uniform good electrical bond with the solder material, the device die further includes an intermediary layer sandwiched between and forming a uniform electrical bond with the top metal layer and the solder layer. A method for making the solder-top device includes lithographically patterning the top metal layer into the contact zones and the contact enhancement zones; then forming a solder layer atop each of the contact enhancement zones using a stencil process for an increased composite thickness.
摘要:
A solder-top enhanced semiconductor device is proposed for packaging. The solder-top device includes a device die with a top metal layer patterned into contact zones and contact enhancement zones. At least one contact zone is electrically connected to at least one contact enhancement zone. Atop each contact enhancement zone is a solder layer for an increased composite thickness thus lowered parasitic impedance. Where the top metal material can not form a uniform good electrical bond with the solder material, the device die further includes an intermediary layer sandwiched between and forming a uniform electrical bond with the top metal layer and the solder layer. A method for making the solder-top device includes: a) Lithographically patterning the top metal layer into the contact zones and the contact enhancement zones. b) Forming a solder layer atop each of the contact enhancement zones using a stencil process for an increased composite thickness.
摘要:
A circuit package assembly is disclosed. The assembly includes a conductive substrate; a high-side n-channel metal oxide semiconductor field effect transistor (NMOSFET) having a source on a side facing a surface of the conductive substrate and in electrical contact therewith and a low-side standard n-channel metal oxide semiconductor field effect transistor (NMOSFET) having a drain on a side facing the conductive substrate and in electrical contact therewith. Co-packaging of high-side and low-side NMOSFETs in this manner may reduce package size and parasitic inductance and capacitance compared to conventional packaging.
摘要:
The present invention is directed to a lead-frame having a stack of semiconductor dies with interposed metalized clip structure. Level projections extend from the clip structure to ensure that the clip structure remains level during fabrication.
摘要:
A dual-leadframe multi-chip package comprises a first leadframe with a first die pad, and a second leadframe with a second die pad; a first chip mounted on the first die pad functioning as a high-side MOSFET and second chip mounted on the second die pad functioning as a low-side MOSFET. The package may further comprises a bypass capacity configured as a third chip mounted on the first die pad or integrated with the first chip. The package may further comprise a three-dimensional connecting plate formed as an integrated structure as the second die pad for electrically connecting a top contact area of the first chip to a bottom contact area of the second chip. A top connecting plate connects a top contact area of the second chip and a top contact area of the third chip to an outer pin of the first leadframe.
摘要:
A power semiconductor device package includes a conductive assembly including a connecting structure and a semiconductor die having an aperture formed therethrough, the aperture being sized and configured to spacedly receive the connecting structure. In an alternative embodiment, a power semiconductor device package includes a conductive assembly including a connecting structure and a pair of semiconductor die disposed on either side of the connecting structure in spaced relationship thereto.
摘要:
A top-side cooled semiconductor package with stacked interconnection plate is disclosed. The semiconductor package includes a circuit substrate with terminal leads, a semiconductor die atop the circuit substrate, a low thermal resistance intimate interconnection plate for bonding and interconnecting a top contact area of the semiconductor die with the circuit substrate, a low thermal resistance stacked interconnection plate atop the intimate interconnection plate for top-side cooling, a molding encapsulant for encapsulating the package except for exposing a top surface of the stacked interconnection plate to maintain effective top-side cooling. The top portion of the stacked interconnection plate can include a peripheral overhang above the intimate interconnection plate. The peripheral overhang allows for a maximized exposed top surface area for heat dissipation independent of otherwise areal constraints applicable to the intimate interconnection plate. The stacked interconnection plate can be partially etched or three dimensionally formed to create the peripheral overhang.
摘要:
A power semiconductor device package includes a conductive assembly including a connecting structure and a semiconductor die having an aperture formed therethrough, the aperture being sized and configured to spacedly receive the connecting structure. In an alternative embodiment, a power semiconductor device package includes a conductive assembly including a connecting structure and a pair of semiconductor die disposed on either side of the connecting structure in spaced relationship thereto.