Abstract:
A process for the hydrotreatment of a feed obtained from renewable sources in which the total stream of feed F is divided into a number of different part-streams of feed F1 to Fn equal to the number of catalytic zones n, where n is 1 to 10. The mass flow rate of hydrogen sent to the first catalytic zone represents more than 80% by weight of the total mass flow rate of hydrogen used. The effluent from the reactor outlet undergoes at least one separation step. A portion of the liquid fraction is recycled to the catalytic zones in a manner such that the local recycle ratio for each of the beds is 2 or less, and the local dilution ratio over each of the beds is less than 4.
Abstract:
The present application generally relates to the introduction of a renewable fuel oil as a feedstock into refinery systems or field upgrading equipment. For example, the present application is directed to methods of introducing a liquid thermally produced from biomass into a petroleum conversion unit; for example, a refinery fluid catalytic cracker (FCC), a coker, a field upgrader system, a hydrocracker, and/or hydrotreating unit; for co-processing with petroleum fractions, petroleum fraction reactants, and/or petroleum fraction feedstocks and the products, e.g., fuels, and uses and value of the products resulting therefrom.
Abstract:
The gasification of a carbonaceous material includes receiving a volume of feedstock, supplying thermal energy to the volume of feedstock to convert at least a portion of the volume of feedstock to at least one pyrolysis reaction product via at least one pyrolysis reaction, super-heating the at least one pyrolysis reaction product, providing a volume of super-heated steam, mixing the volume of super-heated steam with the super-heated at least one pyrolysis reaction product and converting at least a portion of at least one reformed product to at least one synthesis gas product via at least one water-gas-shift reaction.
Abstract:
The invention relates to a process for producing hydrocarbon components, comprising: providing a feedstock comprising tall oil and terpene-based compounds; subjecting the feedstock and a hydrogen gas feed to a hydroprocessing treatment in the presence of a hydroprocessing catalyst to produce hydrocarbon components including n-paraffins, and subjecting the hydrocarbon components including n-paraffins to isomerisation in the presence of a dewaxing catalyst to form a mixture of hydrocarbon components. The invention also relates to an apparatus for implementing the process. The invention further relates to a use of the hydrocarbon components produced by the process as a fuel or as an additive in fuel compositions. The invention also relates to a use of a NiW catalyst on a support selected from Al2O3, zeolite, zeolite-Al2O3, and Al2O3—SiO2 for producing fuel or an additive for fuel compositions from a feedstock comprising tall oil and terpene-based compounds.
Abstract translation:本发明涉及一种生产烃组分的方法,包括:提供包含妥尔油和萜烯类化合物的原料; 在加氢处理催化剂的存在下使原料和氢气进料进行加氢处理以产生包括正链烷烃的烃组分,并在脱蜡催化剂存在下将包含正链烷烃的烃组分进行异构化以形成混合物 的烃组分。 本发明还涉及一种用于实现该过程的装置。 本发明还涉及通过该方法制备的烃组分作为燃料或作为燃料组合物中的添加剂的用途。 本发明还涉及NiW催化剂在选自Al 2 O 3,沸石,沸石-Al 2 O 3和Al 2 O 3 -SiO 2的载体上的用途,用于从包含妥尔油和萜烯类化合物的原料生产燃料或用于燃料组合物的添加剂。
Abstract:
The gasification of a carbonaceous material includes receiving a volume of feedstock, supplying thermal energy to the volume of feedstock to convert at least a portion of the volume of feedstock to at least one pyrolysis reaction product via at least one pyrolysis reaction, super-heating the at least one pyrolysis reaction product, providing a volume of super-heated steam, mixing the volume of super-heated steam with the super-heated at least one pyrolysis reaction product and converting at least a portion of at least one reformed product to at least one synthesis gas product via at least one water-gas-shift reaction.
Abstract:
A motor fuel comprising gasoline comprising 70-99 wt % gasoline and 1 to 30 wt % of mesitylene. This fuel can advantageously contain conventional additives used in gasoline. The use of mesitylene in gasoline blend yields a fuel blend with a higher research octane number and motor octane number. In addition, an improved jet fuel is provided, having from 1-10 wt % mesitylene added to the jet fuel, having improved carbon emission characteristics while maintaining required specifications. Further, an improved bio-fuel is provided, which may function as a replacement for conventional Jet A/JP-8 fuel and has lowered carbon emission specifications, the bio-fuel comprised of 75-90 wt % synthetic parafinnic kerosene (SPK) and 10-25 wt % mesitylene.
Abstract:
Described herein is a two-stage reforming process using a unique configuration which allows the reforming unit to operate at a higher naphtha feed rate as compared to conventional reforming configurations. In the unique reforming process described herein, a naphtha feedstock undergoes a distillation step prior to the first reforming stage. The distillation step separates the naphtha feedstock into a top light a C7 stream, which typically accounts for between 5 and 20 percent of the overall feedstock, and a C8+ stream. The C8+ stream undergoes reforming in a first stage consisting of at least one reactor containing conventional metallic reforming catalyst, under conditions sufficient to convert the C8+ stream into a first intermediate reformate. The C7 stream, bypasses the first stage and is combined with the intermediate reformate, and reformed in the second stage, at lower pressure than in the first stage, over a reforming catalyst containing a medium pore zeolite.
Abstract:
A process for converting light alkanes from a natural gas production stream to higher molecular weight hydrocarbons is provided. The method includes transporting the natural gas stream to an electron beam reactor, such as a steel flow-type radiation reactor connected hermetically to an accelerator beam window. The gas stream is exposed to electron beam radiation to generate an upgraded and substantially liquefied hydrocarbon stream. The method then includes transporting the substantially liquefied hydrocarbon stream into a scrubber to remove non-condensed gases. The remaining liquid hydrocarbon stream is then transported as condensate to a distillation tower, where high octane products are separated through fractionation.
Abstract:
Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to hydrocarbons, ketones and alcohols useful as liquid fuels, such as gasoline, jet fuel or diesel fuel, and industrial chemicals. The process involves the conversion of mono-oxygenated hydrocarbons to aromatics and gasoline range hydrocarbons where the oxygenated hydrocarbons are derived from biomass.
Abstract:
Disclosed herein are motor fuels providing enhanced properties for use with 2-stroke and 4-stroke engines. The fuels comprise isooctane, alkylate, mesitylene, isopentane and butane, and optionally a special lube oil premixed in solution.