Abstract:
A composite particle comprises inorganic compound particles that are derived from inorganic particle and are uniformly dispersed and sintered in a matrix phase composed of silica, or comprises silica particles that are uniformly dispersed and sintered in a matrix phase composed of said inorganic compound particles. The composite particle is prepared by sintering a mixture of (1) finely powdered silica having a BET specific surface area of 50 m2/g or greater, (2) an inorganic particle other than silica and (3) water at a temperature of 300° C. or higher to form a glass-like substance, and then crushing the glass-like substance. A spherical composite particle is prepared by melting and spheroidizing the mixture of (1)-(3) in a flame of 1,800° C. or higher. Also provided are a resin composition for a reflector for a light-emitting semiconductor device, a light-emitting semiconductor device that includes said reflector, and a light-emitting semiconductor device in which a light-emitting semiconductor element is encapsulated with said resin composition.
Abstract:
A silica-containing composition is disclosed. The composition comprises a compound having the following formula: (SiO2)x(OH)yMzOaF.B: wherein M is at least one of the following: boron, magnesium, aluminum, calcium, titanium, vanadium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, molybdenum, palladium, silver, cadmium, tin, platinum, gold, and bismuth; wherein F optionally exists and comprises at least one of the following: a functionalized organosilane, a sulfur-containing organosilane, an amine-containing organosilane, and an alkyl-containing organosilane at a surface area coverage of about 0.01 to about 100%. The molar ratio of y/x is equal to about 0.01 to about 0.5, the molar ratio of x/z is equal to about 0.5 to about 300, and the molar ratio of a/z is dependent on the nature of the metal oxide. B comprises a hygroscopic solid and preferably comprises at least one alkaline earth oxide, lanthanide oxide, or combinations thereof.
Abstract:
A rubber composition obtained by dry-mixing a natural rubber wet master batch yielded by mixing at least a natural rubber latex and a carbon-black-containing slurry solution with each other in a liquid phase and drying the resultant mixture, a dry rubber made mainly of a polybutadiene rubber, and an oil, wherein when the total amount of rubber components in the rubber composition is regarded as 100 parts by mass, the natural rubber is contained in an amount of 50 parts or more by mass, and the polybutadiene rubber is contained in an amount of 20 to 50 parts by mass, and the oil has a pour point of −10 C or lower, and an aniline point of 90 C or higher, and the blend amount of the oil is from 15 to 40 parts by mass for 100 parts by mass of the rubber components.
Abstract:
An object of the present invention is to provide a rubber composition for a tire, capable of achieving both good rolling resistance properties and good wear resistance in a sufficiently compatible manner when the rubber composition is applied to a component member of a tire. Specifically, the present invention provides a rubber composition comprising a rubber composition and hydrated silica, wherein “CTAB” (m2/g) as specific surface area by cetyltrimethylammonium bromide adsorption and “IB” as ink bottle-shaped micropore index, of the hydrated silica, satisfy a specific relationship and “weight loss on ignition” as weight loss when the hydrate silicate is heated at 750° C. for 3 hours and “weight loss on heating” as weight loss when the hydrate silicate is heated at 105° C. for 2 hours satisfy a specific relationship.
Abstract:
A rubber composition comprises from 2 to 50 parts by weight of an aromatic modified terpene resin having a softening point of ≧100° C., and two types of silica, a silica X and a silica Y, at a total quantity of 60 to 130 parts by weight relative to 100 parts by weight of a diene rubber containing from 5 to 50 weight % of a modified S-SBR having a vinyl content of not lower than 60 weight %. A functional group in the modified S-SBR reacts with a silanol group, a proportion of silica relative to the total quantity of a reinforcing filler containing the silica and carbon black is not lower than 85 weight %, a nitrogen specific surface area of the silica X is not lower than 140 m2/g, and a nitrogen specific surface area of the silica Y is not lower than 100 m2/g but lower than 140 m2/g.
Abstract:
A fluororubber composition comprising 100 parts by weight of a peroxide-crosslinkable tetrafluoroethylene-vinylidene fluoride-hexafluoropropene ternary copolymer rubber having a fluorine content of 64 wt. % or more, (A) 5 to 90 parts by weight of carbon black having a specific surface area of 5 to 20 m2/g, (B) 5 to 40 parts by weight of a fine bituminous powder, (C) at least one of 1 to 20 parts by weight of hydrophilicity-imparted talc and/or 1 to 30 parts by weight of hydrophilicity-imparted clay, and (D) 0.5 to 6 parts by weight of an organic peroxide; the fluororubber composition being used as a molding material for fuel oil sealing materials to be in contact with fuel oil. The fluororubber composition provides a sealing materials having excellent metal corrosion resistance, without compounding an acid acceptor comprising a metal oxide.
Abstract:
The present invention relates to a polymer composition which absorbs infrared (IR) radiation, containing a transparent thermoplastic plastic, an inorganic infrared absorber and at least one inorganic nano-scale pigment, and to the preparation and use of the polymer compositions according to the invention, and to products produced therefrom. In particular, the present invention relates to polymer compositions comprising a. at least one transparent thermoplastic material; b. at least one inorganic IR absorber which comprises a tungsten compound and wherein the IR absorber is present in an amount of from 0.0075 wt. % to 0.0750 wt. %, calculated as solids content of tungstate in the total composition; and c. at least one inorganic, nano-scale pigment present in an amount of from 0.0005 wt. % to 0.0035 wt. %, based on the total composition; and d. optionally further additives.
Abstract:
A method of producing a coagulated latex composite. A coagulating mixture of a first elastomer latex and a particulate filler slurry is flowed along a conduit, and a second elastomer latex is introduced into the flow of the coagulating mixture.
Abstract:
A tire or tire lining comprising a rubber composite, comprising at least one rubber or elastomer matrix and pristine nano graphene platelets dispersed in the matrix. The pristine nano graphene-modified tire or tire lining has a significantly enhanced thermal conductivity.
Abstract:
A crystalline thermoplastic resin composition containing a crystalline thermoplastic resin, acicular aluminum hydroxide having a BET specific surface area of from 10 m2/g to 100 m2/g and a nucleating agent in which a weight ratio (A/B) of the aluminum hydroxide (A) to the nucleating agent (B) is 40 or less.