Abstract:
The invention concerns a device comprising a base (2) and a door (20), said device having a closed door position in which a circuit (8) of the device comprises a bag comprising two flexible films and connectors of the conveying network, and a press (9) comprising a first she (16) disposed on a front face (5) of said base (2) and a second shed (17) disposed in said door (20); and a hinge system hinging said door (20) relative to said base (2), and disposed only on one side of said door (20) so as to form lateral clearances between said door (20) and said base (2) over the rest of a perimeter of said door (20).
Abstract:
A method for transferring a filter membrane (130) bearing a retentate to a reagent pad (310), in which the membrane is mounted in a support frame (120) having a shoulder (121) and a skirt (122) projecting from the shoulder, the pad being mounted on a cassette (300) of complementary form to said skirt, the skirt being adapted to slide sealingly on the cassette until it comes into abutment formed by the shoulder, the method comprising the steps of sealingly engaging the skirt of the membrane support frame on the cassette, establishing a pressure difference between the cassette and the membrane support frame such that the membrane adopts the shape of a dome pointing towards the pad, while maintaining the pressure difference, applying a force on the frame so as to make the skirt slide on the cassette until contact is established between the end of the dome and the pad, maintaining a force on the frame so as to move it downward until it comes into abutment formed by the shoulder while maintaining the pressure difference.
Abstract:
A method of aerosol integrity testing of filters, capable of detecting single defects that are less than 20 μm in diameter, and even as small as 2 μm in diameter, in liquid sterilizing grade filters such as filter cartridges. The method challenges the filter in a dry state with a particle stream of aerosol particles of the appropriate size and in the appropriate concentration, such that at least one or more of the particles in the stream will penetrate a defective region or regions within the membrane but will not penetrate in the integral region of the membrane. Wetting of the filter is not required.
Abstract:
A number of novel improved microfluidic configurations and systems and methods of manufacture and operation. In one embodiment, three wells are used for independent cell culture systems in a cell culture array. In a second aspect, artificial sinusoids with artificial epithelial barriers are provided with just one (optionally shared or multiplexed) fluidic inlet and one (optionally shared or multiplexed) fluidic output, where the medium output also functions as a cellular input. A pneumatic cell loader combined with other components provides a fully automated cell culture system. Magnetic alignment of plate molds provides advantages and ease of molded manufacture.
Abstract:
The method comprises the step of forming pipes (12) by clamping a bag between shells (13, 14) and by injecting an inflating agent via an inflating connector.The circuit comprises a bag (126) and a press (10) comprising two shells (13, 14) clamping said bag in a state in which pipes (12) are formed between the films (25, 26) of the bag.
Abstract:
Sample preparation device for receiving in sealing relation one or more filter assemblies and one or more sample containers, each container uniquely positioned within the device to receive filtered sample from a designated filter. The device includes a body, a lid disposed on the body, a container tray, a base, an integrated seal on the body, a valve and a valve actuator. The tray can be disposed in a vacuum chamber defined by the lid and the body, and one or more sample containers can be disposed in the tray. When properly positioned in the tray in the vacuum chamber, each container is in fluid communication with a single respective filter assembly disposed in sealing relation in a respective aperture in the lid. A single actuation of a valve to place the vacuum chamber under vacuum causes the lid to seal to the base and drives the simultaneous filtration of a plurality of samples.
Abstract:
The present invention relates to chromatography matrices including ligands based on one or more domains of immunoglobulin-binding proteins such as, Staphylococcus aureus Protein A (SpA), as well as methods of using the same.
Abstract:
The embodiments disclosed herein are directed to an apparatus useful in conducting detection of compounds on blotting membranes. The device is comprised of several layers including a porous support layer below the blotting membrane(s), a flow distributor above the blotting membrane(s) and optionally a well on the flow distributor to contain the liquid to the desired area and to allow for lower starting volumes of such liquid. Preferably, the flow distributor is a non-binding or low binding hydrophilic porous membrane such as a 0.22 micron membrane and the support layer is a grid or sintered porous material. The distributor and support are held together to form an envelope around the membrane(s). The use of a hinge, clips and other such devices is preferred in doing so.