摘要:
A top-side cooled compact semiconductor package with integrated bypass capacitor is disclosed. The top-side cooled compact semiconductor package includes a circuit substrate with terminal leads, numerous semiconductor dies bonded atop the circuit substrate, numerous elevation-adaptive interconnection plates for bonding and interconnecting top contact areas of the semiconductor dies with the circuit substrate, a first member of the elevation-adaptive interconnection plates has a first flat-top area and a second member of the elevation-adaptive interconnection plates has a second flat-top area in level with the first flat-top area, a bypass capacitor, having two capacitor terminals located at its ends, stacked atop the two interconnection plate members while being bonded thereto via the first flat-top area and the second flat-top area for a reduced interconnection parasitic impedance.
摘要:
Various embodiments of the disclosure include the formation of enhancement-mode (e-mode) gate injection high electron mobility transistors (HEMT). Embodiments can include GaN, AlGaN, and InAlN based HEMTs. Embodiments also can include self-aligned P-type gate and field plate structures. The gates can be self-aligned to the source and drain, which can allow for precise control over the gate-source and gate-drain spacing. Additional embodiments include the addition of a GaN cap structure, an AlGaN buffer layer, AlN, recess etching, and/or using a thin oxidized AlN layer. In manufacturing the HEMTs according to present teachings, selective epitaxial growth (SEG) and epitaxial lateral overgrowth (ELO) can both be utilized to form gates.
摘要:
A copper bonding compatible bond pad structure and associated method is disclosed. The device bond pad structure includes a buffering structure formed of regions of interconnect metal and regions of non-conductive passivation material, the buffering structure providing buffering of underlying layers and structures of the device.
摘要:
This invention discloses semiconductor device that includes a top region and a bottom region with an intermediate region disposed between said top region and said bottom region with a controllable current path traversing through the intermediate region. The semiconductor device further includes a trench with padded with insulation layer on sidewalls extended from the top region through the intermediate region toward the bottom region wherein the trench includes randomly and substantially uniformly distributed nano-nodules as charge-islands in contact with a drain region below the trench for electrically coupling with the intermediate region for continuously and uniformly distributing a voltage drop through the current path.
摘要:
A resetable over-current self-protecting semiconductor power device comprises a vertical power semiconductor chip and an over-current protection layer composed of current limiting material such as a PTC material. The over-current protection layer may be sandwiched between the vertical power semiconductor chip and a conductive plate, which could be a leadframe, a metal plate, a PCB plate or a PCB that the device is mounted on.
摘要:
The present invention features a power semiconductor package and a method of forming the same that includes forming, in the body, a stress relief region disposed between a pair of mounting regions and attaching a semiconductor die in each of the mounting regions. The semiconductor die has first and second sets of electrical contacts with the first set being on a first surface of the semiconductor die and the second set being disposed upon a second surface of the semiconductor die opposite to the first surface. The first set is in electrical communication with the mounting region. Walls are formed on outer sides of the pair of mounting regions, defining a shaped body, with the shaped body and walls defining an electrically conductive path that extends from the first set and terminates on side of the package common with the second set.
摘要:
This invention discloses a semiconductor power device disposed on a semiconductor substrate includes a plurality of deep trenches with an epitaxial layer filling said deep trenches and a simultaneously grown top epitaxial layer covering areas above a top surface of said deep trenches over the semiconductor substrate. A plurality of trench MOSFET cells disposed in said top epitaxial layer with the top epitaxial layer functioning as the body region and the semiconductor substrate acting as the drain region whereby a super-junction effect is achieved through charge balance between the epitaxial layer in the deep trenches and regions in the semiconductor substrate laterally adjacent to the deep trenches. Each of the trench MOSFET cells further includes a trench gate and a gate-shielding dopant region disposed below and substantially aligned with each of the trench gates for each of the trench MOSFET cells for shielding the trench gate during a voltage breakdown.
摘要:
A semiconductor power device package having a lead frame-based integrated inductor is disclosed. The semiconductor power device package includes a lead frame having a plurality of leads, a inductor core attached to the lead frame such that a plurality of lead ends are exposed through a window formed in the inductor core, a plurality of bonding wires, ones of the plurality of bonding wires coupling each of the plurality of lead ends to adjacent leads about the inductor core to form the inductor, and a power integrated circuit coupled to the inductor. In alternative embodiments, a top lead frame couples each of the plurality of lead ends to adjacent leads about the inductor core by means of a connection chip.
摘要:
A multilayer inductor is disclosed. The multilayer inductor includes a bottom magnetic layer having an external conductive pattern formed on a bottom surface thereof for connection to a substrate such as a printed circuit board. The bottom external conductive pattern includes signal/power contacts and first and second inductor electrodes. A top magnetic layer includes a top external conductive pattern having signal/power contacts and inductor electrode contacts. An inductor conductive pattern formed on the top surfaces of intermediate magnetic layers disposed between the top and bottom magnetic layers are electrically coupled to each other by means of through holes to form a spiral inductor element. The spiral inductor element is coupled to the first inductor electrode by means of a through hole formed in the bottom magnetic layer and to the second inductor electrode by means of power conductive traces formed on side surfaces of the multilayer inductor. Flux density reducing layers may be inserted directly above the bottom magnetic layer and directly below the top magnetic layer. Signal/power conductive traces formed on side surfaces of the multilayer inductor provide signal/power routing between the top magnetic layer signal/power contacts and the bottom magnetic layer signal/power contacts. The top external conductive pattern accommodates a semiconductor chip in a flip chip configuration.
摘要:
A multilayer inductor is disclosed. The multilayer inductor includes a bottom magnetic layer having an external conductive pattern formed on a bottom surface thereof for connection to a substrate such as a printed circuit board. The bottom external conductive pattern includes signal/power contacts and first and second inductor electrodes. A top magnetic layer includes a top external conductive pattern having signal/power contacts and inductor electrode contacts. An inductor conductive pattern formed on the top surfaces of intermediate magnetic layers disposed between the top and bottom magnetic layers are electrically coupled to each other by means of through holes to form a spiral inductor element. The spiral inductor element is coupled to the first inductor electrode by means of a through hole formed in the bottom magnetic layer and to the second inductor electrode by means of power conductive traces formed on side surfaces of the multilayer inductor. Flux density reducing layers may be inserted directly above the bottom magnetic layer and directly below the top magnetic layer. Signal/power conductive traces formed on side surfaces of the multilayer inductor provide signal/power routing between the top magnetic layer signal/power contacts and the bottom magnetic layer signal/power contacts. The top external conductive pattern accommodates a semiconductor chip in a flip chip configuration.