Abstract:
A method of manufacturing bistable strips having different curvatures, each strip including a plurality of portion of layers of materials, wherein at least one specific layer portion is deposited by a plasma spraying method in conditions different for each of the strips.
Abstract:
A structure comprising at least one DTI-type insulating trench in a substrate, the trench being at the periphery of at least one active area of the substrate forming a pixel, the insulating trench including a cavity filled with a dielectric material, the internal walls of the cavity being covered with a layer made of a boron-doped material.
Abstract:
An input/output circuit layout has a first section in which first transistors having a thicker gate oxide are located and a second section in which second transistors having a thinner gate oxide are located. Due to process technology constraints, the gates of all of the second transistors are oriented in a single common direction. The second section has a perimeter having a square shape including a first edge and a second edge adjacent to the first edge. First connection pins coupled to the second transistors are provided with an orientation that extends inwardly from and perpendicular to the first edge. Second connection pins coupled to the second transistors are provided with an orientation that extends inwardly from and perpendicular to said second edge. The square shape and presence of pins on adjacent first and second edges permits rotation of the second section to fit within different orientations of the layout.
Abstract:
An insulation wall separating transistors formed in a thin semiconductor layer resting on an insulating layer laid on a semiconductor substrate, this wall being formed of an insulating material and comprising a wall crossing the thin layer and the insulating layer and penetrating into the substrate, and lateral extensions extending in the substrate under the insulating layer.
Abstract:
An avalance diode including, between two heavily-doped regions of opposite conductivity types arranged at the surface of a semiconductor region, a lightly-doped region, with length L of the lightly-doped region between the heavily-doped regions approximately ranging between 50 and 200 nm.
Abstract:
An integrated with a block including first and second oppositely doped semiconductor wells. There are standard cells placed next to one another, each standard cell including first transistors and a clock tree cell encircled by standard cells. The clock tree cell has a third semiconductor well with the same doping type as the doping of the first well and second transistors. The clock tree cell also has a semiconductor strip extending continuously around the third well and having the opposite doping type to the doping of the third well to electrically isolate the third well from the first well.
Abstract:
A method includes making a gate stack on the surface of an active zone, including depositing a first dielectric layer; depositing a gate conductive layer; depositing a first metal layer; depositing a second metal layer; depositing a second dielectric layer; partially etching the gate stack for the formation of a gate zone on the active zone; making insulating spacers on either side of the gate zone on the active zone; making source and drain electrodes zones; making silicidation zones on the surface of the source and drain zones; etching, in the gate zone on the active zone, the second dielectric layer and the second metal layer with stopping on the first metal layer, so as to form a cavity between the insulating spacers; making a protective plug at the surface of the first metal layer of the gate zone on the active zone, where the protective plug fills the cavity.
Abstract:
A method is provided for producing a semiconductor layer having at least two different thicknesses from a stack of the semiconductor on insulator type including at least one substrate on which an insulating layer and a first semiconductor layer are successively disposed, the method including etching the first layer so that said layer is continuous and includes at least one first region having a thickness less than that of at least one second region; oxidizing the first layer to form an electrically insulating oxide film on a surface thereof so that, in the first region, the oxide film extends as far as the insulating layer; partly removing the oxide film to bare the first layer outside the first region; forming a second semiconductor layer on the stack, to form, with the first layer, a third continuous semiconductor layer having a different thickness than that of the first and second regions.
Abstract:
An integrated circuit includes a back side illuminated image sensor formed by a substrate supporting at least one pixel, an interconnect part situated above a front side of the substrate and an anti-reflective layer situated above a back side of the substrate. The anti-reflective layer may be formed of a silicon nitride layer. An additional layer is situated above the anti-reflective layer. The additional layer is formed of one of amorphous silicon nitride or hydrogenated amorphous silicon nitride, in which the ratio of the number of silicon atoms per cubic centimeter to the number of nitrogen atoms per cubic centimeter is greater than 0.7.
Abstract:
An electronic device includes an integrated circuit chip with an insulating passivation layer. An opening in the passivation layer uncovers a first region of an electrical contact. An electrical connection pad is formed to fill the opening by covering the first region and extend in projection in such a way as to cover a second region situated on the passivation layer surrounding the opening. The periphery of at least one of the first and second regions has an elongate or oblong shape. Centers of the opening and the pad are aligned with each other.