Abstract:
A memory device comprises an array of memory cells each capable of storing multiple bits of data. The memory cells are arranged in memory strings that are connected to a common source line. Each memory cell includes a programmable transistor connected in series with a resistance. The transistor includes a gate dielectric that is switchable between a plurality of different resistance values. The threshold voltage of the transistor changes according to the resistance value of the gate dielectric. Memory states of the memory cells can thus be associated with respective resistance values of the dielectric layer of the transistor.
Abstract:
An object tracking method includes steps of obtaining multiple first classifications of pixels within a first focus frame in a first frame picture, wherein the first focus frame includes an object to be tracked and has a first rectangular frame in a second frame picture; performing a positioning process to obtain a second rectangular frame; and obtaining color features of pixels around the second rectangular frame sequentially and establishing multiple second classifications according to the color feature. The established second classifications are compared with the first classifications sequentially to obtain an approximation value, compared with a predetermined threshold. The second rectangular frame is progressively adjusted, so as to establish a second focus frame. By analyzing color features of the pixels of the object and with a classification manner, the efficacy of detecting a shape and size of the object so as to update information of the focus frame is achieved.
Abstract:
A microelectromechanical filter is provided. The microelectromechanical filter includes an input electrode, an output electrode, one or several piezoelectric resonators, one or several high quality factor resonators, and one or several coupling beams. The input electrode and the output electrode are disposed on the piezoelectric resonators. The high quality factor resonator is silicon or of piezoelectric materials, and there is no metal electrode on top of the resonator. The coupling beam is connected between the piezoelectric resonator and the high quality factor resonator. The coupling beam transmits an acoustic wave among the resonators, and controls a bandwidth of filter. The microelectromechanical filter with low impedance and high quality factor fits the demand for next-generation communication systems.
Abstract:
An inter-digital bulk acoustic resonator including a resonating structure, one or more input electrodes, one or more output electrodes, a substrate, and a supporting structure disposed on the substrate is provided. The resonating structure includes one or more resonating beams and a coupling beam. The resonating beams are connected at opposite two sides of the coupling beam respectively. The input electrodes and the output electrodes are arranged among the resonating beams in interlace. The input electrodes, the output electrodes, and the resonating beams are parallel to each other. Two ends of the coupling beam are connected to the supporting structure, such that the resonating structure is supported on the substrate.
Abstract:
Methods and apparatus for performing end point determination. A method includes receiving a wafer into an etch tool chamber for performing an RIE etch; beginning the RIE etch to form vias in the wafer; receiving in-situ measurements of one or more physical parameters of the etch tool chamber that are correlated to the RIE etch process; providing a virtual metrology model for the RIE etch in the chamber; inputting the received in-situ measurements to the virtual metrology model for the RIE etch in the chamber; executing the virtual metrology model to estimate the current via depth; comparing the estimated current via depth to a target depth; and when the comparing indicates the current via depth is within a predetermined threshold of the target depth; outputting a stop signal. An apparatus for use with the method embodiment is disclosed.
Abstract:
A wireless charging mobile communication device includes a wireless communication module, an electricity storage module, a converting module, an antenna module and a switching module. The antenna module receives and transmits wireless signal or electromagnetically induces a current. The switching module is electrically coupled to the antenna module, the wireless communication module, and the converting module. The switching module is for connecting the antenna module with the wireless communication module or connecting the antenna module with the converting module. The converting module is electrically coupled to the electricity storage module and converts the electromagnetically induced current for facilitating a charging of the electricity storage module. The converting module, the antenna module, and the switching module are integrated as an antenna device.
Abstract:
A method for switching access mode of a hard drive is provided. The method includes the following steps: detecting and writing digitally current access mode as a current registry code of a system registration information by a processing unit, then overwriting the current registry code with a new registry code that corresponds to a new access mode other than the current access mode by the processing unit, and then reloading the system registration information by the processing unit, and then changing the current access mode to the new access mode correspondingly by a Basic Input/Output System (BIOS). In addition, a system executing the method and a computer-readable medium encoded with processing instructions for implementing the method are also provided.
Abstract:
The patterns (or layout), and pattern densities of TSVs described above provide layout of TSVs that could be etched with reduced etch microloading effect(s) and with good within-die uniformity. The patterns and pattern densities of TSVs for different groups of TSVs (or physically separated groups, or groups with different functions) should be fairly close amongst different groups. Different groups of TSVs (or TSVs with different functions, or physically separated TSV groups) should have relatively close shapes, sizes, and depths to allow the aspect ratio of all TSVs to be within a controlled (and optimal) range. The size(s) and depths of TSVs should be carefully selected to optimize the etching time and the metal gap-fill time.
Abstract:
This invention has two synergistic elements for simultaneous use in point-of-care or field analyses of diverse substances important to clinical medicine and other applications. The first element is a sample holder in which are stored the several reagents need for quantification of target molecules. The onboard storage of reagents in a water soluble plastic obviates the need for purchase, storage, measuring and mixing of the required reagents prior to analyses. The second part of the invention is a compact hand-held analyzer made of modern miniature optical components, into which the holder is inserted right after it is loaded with a sample by capillary action. The combination of the holder and analyzer permits analyses that are ten times faster than those done with current analyzers, and equally accurate. Analyses can be performed by diverse people, who require only a few minutes of training in the use of the entire invention.
Abstract:
A flash memory device with a wear-leveling mechanism includes at least one flash memory, a hot list, a bitmap, a source pointer, and a controller. The controller obtains a physical memory block with high erase count through the hot list, an erase count of the physical memory block, and an overall average erase count of the flash memory device. The controller further finds out a physical memory block which stores static data through managing the bitmap and the source pointer. The controller moves the static data to the physical memory block with high erase count, and releases the physical memory block which stores the static data to avoid the physical memory block with high erase count being worn down increasingly more seriously.