Abstract:
A method of removing titanium nitride hardmask is described. The hardmask resides above a low-k dielectric layer prior to removal and the low-k dielectric layer retains a relatively low net dielectric constant after the removal process. The low-k dielectric layer may be part of a dual damascene structure having copper at the bottom of the vias. A non-porous carbon layer is deposited prior to the titanium nitride hardmask removal to protect the low-k dielectric layer and the copper. The titanium nitride hardmask is removed with a gas-phase etch using plasma effluents formed in a remote plasma from a chlorine-containing precursor. Plasma effluents within the remote plasma are flowed into a substrate processing region where the plasma effluents react with the titanium nitride.
Abstract:
Methods of selectively etching metal-containing materials from the surface of a substrate are described. The etch selectively removes metal-containing materials relative to silicon-containing films such as silicon, polysilicon, silicon oxide, silicon germanium, silicon carbide, silicon carbon nitride and/or silicon nitride. The methods include exposing metal-containing materials to halogen containing species in a substrate processing region. No plasma excites the halogen-containing precursor either remotely or locally in embodiments.
Abstract:
Methods of etching exposed titanium nitride with respect to other materials on patterned heterogeneous structures are described, and may include a remote plasma etch formed from a fluorine-containing precursor. Precursor combinations including plasma effluents from the remote plasma are flowed into a substrate processing region to etch the patterned structures with high titanium nitride selectivity under a variety of operating conditions. The methods may be used to remove titanium nitride at faster rates than a variety of metal, nitride, and oxide compounds.
Abstract:
Methods of selectively etching tungsten from the surface of a patterned substrate are described. The methods electrically separate vertically arranged tungsten slabs from one another as needed. The vertically arranged tungsten slabs may form the walls of a trench during manufacture of a vertical flash memory cell. The tungsten etch may selectively remove tungsten relative to films such as silicon, polysilicon, silicon oxide, aluminum oxide, titanium nitride and silicon nitride. The methods include exposing electrically-shorted tungsten slabs to remotely-excited fluorine formed in a remote plasma region. Process parameters are provided which result in uniform tungsten recess within the trench. A low electron temperature is maintained in the substrate processing region to achieve high etch selectivity and uniform removal throughout the trench.
Abstract:
A method of removing titanium nitride hardmask is described. The hardmask resides above a low-k dielectric layer prior to removal and the low-k dielectric layer retains a relatively low net dielectric constant after the removal process. The low-k dielectric layer may be part of a dual damascene structure having copper at the bottom of the vias. A non-porous carbon layer is deposited prior to the titanium nitride hardmask removal to protect the low-k dielectric layer and the copper. The titanium nitride hardmask and the non-porous carbon layer are removed with a gas-phase etch using plasma effluents formed in a remote plasma from a chlorine-containing precursor. Plasma effluents within the remote plasma are flowed into a substrate processing region where the plasma effluents react with the non-porous carbon layer and the titanium nitride.
Abstract:
A method of removing titanium nitride hardmask is described. The hardmask resides above a low-k dielectric layer prior to removal and the low-k dielectric layer retains a relatively low net dielectric constant after the removal process. The low-k dielectric layer may be part of a dual damascene structure having copper at the bottom of the vias. A non-porous carbon layer is deposited prior to the titanium nitride hardmask removal to protect the low-k dielectric layer and the copper. The titanium nitride hardmask is removed with a gas-phase etch using plasma effluents formed in a remote plasma from a fluorine-containing precursor. Plasma effluents within the remote plasma are flowed into a substrate processing region where the plasma effluents react with the titanium nitride.
Abstract:
Methods are described for forming a dielectric layer on a patterned substrate. The methods may include combining a silicon-and-carbon-containing precursor and a radical oxygen precursor in a plasma free substrate processing region within a chemical vapor deposition chamber. The silicon-and-carbon-containing precursor and the radical oxygen precursor react to deposit a flowable silicon-carbon-oxygen layer on the patterned substrate. The resulting film possesses a low wet etch rate ratio relative to thermal silicon oxide and other standard dielectrics.
Abstract:
Systems, chambers, and processes are provided for controlling process defects caused by moisture contamination. The systems may provide configurations for chambers to perform multiple operations in a vacuum or controlled environment. The chambers may include configurations to provide additional processing capabilities in combination chamber designs. The methods may provide for the limiting, prevention, and correction of aging defects that may be caused as a result of etching processes performed by system tools.
Abstract:
A method of removing titanium nitride is described. The silicon nitride resides on a patterned substrate. The titanium nitride is removed with a gas-phase etch using plasma effluents formed in a remote plasma from a fluorine-containing precursor, a nitrogen-and-hydrogen-containing precursor and an oxygen-containing precursor. Plasma effluents within the remote plasma are flowed into a substrate processing region where the plasma effluents react with the titanium nitride.
Abstract:
Methods of etching two doped silicon portions at two different etch rates are described. An n-type silicon portion may be etched faster than a p-type silicon portion when both are exposed and present on the same substrate. The n-type silicon portion may be doped with phosphorus and the p-type silicon portion may be doped with boron. In one example, the n-type silicon portion is single crystal silicon and the p-type silicon portion is polycrystalline silicon (a.k.a. polysilicon). The p-type silicon portion may be a polysilicon floating gate in a flash memory cell and may be located above a gate silicon oxide which, in turn, is above an n-type active area single crystal silicon portion. The additional trimming of the n-type active area silicon portion may reduce the accumulation of trapped charges during use and increase the lifespan of flash memory devices.