摘要:
An implantable medical device is described. In an example, the implantable medical device includes an electromechanical substrate and sensor, such as a pressure sensor, disposed on the substrate. At least a portion of the sensor is packaged via a liquid encapsulation. The packaging includes a shaped flexible outer membrane that surrounds at least the portion of the sensor. The packaging also includes a hydrophobic liquid disposed between at least the portion of the pressure sensor and the flexible outer membrane. The implantable medical device can be a part of a medical system used for monitoring medical conditions or performing medical operations based on the implantable medical device. Additionally, manufacturing methods are described for packaging the sensor in a liquid encapsulation.
摘要:
Embodiments in accordance with the present invention relate to packed-column nano-liquid chromatography (nano-LC) systems integrated on-chip, and methods for producing and using same. The microfabricated chip includes a column, flits/filters, an injector, and a detector, fabricated in a process compatible with those conventionally utilized to form integrated circuits. The column can be packed with supports for various different stationary phases to allow performance of different forms of nano-LC, including but not limited to reversed-phase, normal-phase, adsorption, size-exclusion, affinity, and ion chromatography. A cross-channel injector injects a nanoliter/picoliter-volume sample plug at the column inlet. An electrochemical/conductivity sensor integrated at the column outlet measures separation signals. A self-aligned channel-strengthening technique increases pressure rating of the microfluidic system, allowing it to withstand the high pressure normally used in high performance liquid chromatography (HPLC). On-chip sample injection, separation, and detection of mixture of anions in water is successfully demonstrated using ion-exchange nano-LC.
摘要:
Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.
摘要:
The invention provides chip packaging and processes for the assembly of retinal prosthesis devices. Advantageously, photo-patternable adhesive or epoxy such as photoresist is used as glue to attach a chip to the targeted thin-film (e.g., parylene) substrate so that the chip is used as an attachment to prevent delamination.
摘要:
A three-coil electromagnetic induction power transfer system is disclosed for epiretinal prostheses and other implants. A third, buffer coil is disposed between an external transmitting coil and a receiver coil buried within the body to improve efficiency and robustness to misalignments. One or more of the coils can be manufactured using micromechanical machining techniques to lay out conductors in a ribbon of biocompatible insulator, folding lengths of the insulated conductor traces longitudinally over one another, and then spiraling them into a ring. The traces change axial position in the ring by shifting across fold lines. One or more U-shaped sections on the traces can be folded so that adjacent traces can project opposite one another, lengthening the resulting ribbon that can be wound into a coil.
摘要:
Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.
摘要:
Coating porous material, such as PDMS, with parylene N, C, D, and AF-4 by vapor deposition polymerization is described in which a temperature of the porous material's surface being coated is heated to between 60° C. and 120° C., or 80° C. and 85° C., during deposition. The parylene forms nano roots within the porous material that connect with a conformal surface coating of parylene. In some embodiments, a watertight separation chamber in an integrated microfluidic liquid chromatography device is fabricated by heating tunnels in micro-fabricated PDMS and depositing parylene within the heated tunnels.
摘要:
Systems, devices, and methods are presented for a prosthetic injectable intraocular lens. The lenses can be made from silicone, fluorosilicone, and phenyl substituted silicone and be semipermeable to air. One or more silicone elastomeric patches located outside the optical path on the anterior side but away from the equator can be accessed by surgical needles in order to fill or adjust optically clear fluid within the lens. The fluid can be adjusted in order to set a base dioptric power of the lens and otherwise adjust a lens after its initial insertion. The elastomeric patches are sized so that they self-seal after a needle is withdrawn. A straight or stepped slit in the patch can allow a blunt needle to more easily access the interior of the lens.
摘要:
Systems and methods for monitoring analytes in real time using integrated chromatography systems and devices. Integrated microfluidic liquid chromatography devices and systems include multiple separation columns integrated into a single substrate. Using such a device, parallel analysis of multiple samples can be performed simultaneously and/or sequential analysis of a single sample can be performed simultaneously on a single chip or substrate. The devices and systems are well suited for use in high pressure liquid chromatography (HPLC) applications. HPLC chips and devices including embedded parylene channels can be fabricated using a single mask process.
摘要:
The present invention provides a method for diagnosing cancer, predicting a disease outcome or response to therapy in a patient sample. The method involves isolating a circulating tumor cell (CTC), for example, a viable CTC, from a sample using a parylene microfilter device comprising a membrane filter having or consisting of a parylene substrate, which has an array of holes with a predetermined shape and size; and detecting and quantifying telomerase activity in blood circulating tumor cells. The invention further provides methods of using cells live-captured in various applications.