Abstract:
A method and a system for determining an information transfer rate between a driver and a vehicle, including measuring driver information and measuring vehicle information. Further, calculating a forward information transfer rate from the driver to the vehicle using the driver information and the vehicle information over a period of time, and calculating a reverse information transfer rate from the vehicle to the driver using the driver information and the vehicle information over the period of time. Additionally the method includes, calculating a driver control state using the forward information transfer rate and the reverse information transfer rate.
Abstract:
Methods of assessing driver behavior include monitoring vehicle systems and driver monitoring systems to accommodate for a slow reaction time, attention lapse and/or alertness of a driver. When it is determined that a driver is drowsy, for example, the response system may modify the operation of one or more vehicle systems. The response system can modify the control of two or more systems simultaneously in response to driver behavior.
Abstract:
Methods of assessing driver behavior include monitoring vehicle systems and driver monitoring systems to accommodate for a slow reaction time, attention lapse and/or alertness of a driver. When it is determined that a driver is drowsy, for example, the response system may modify the operation of one or more vehicle systems. The response system can modify the control of two or more systems simultaneously in response to driver behavior.
Abstract:
Methods of assessing driver behavior include monitoring vehicle systems and driver monitoring systems to accommodate for a driver's slow reaction time, attention lapse and/or alertness. When it is determined that a driver is drowsy, for example, the response system may modify the operation of one or more vehicle systems. The systems that may be modified include: visual devices, audio devices, tactile devices, antilock brake systems, automatic brake prefill systems, brake assist systems, auto cruise control systems, electronic stability control systems, collision warning systems, lane keep assist systems, blind spot indicator systems, electronic pretensioning systems and climate control systems.
Abstract:
A computer-implemented method including, transmitting a high-spectrum energy wave towards a subject from a first sensor and transmitting a low-spectrum energy wave towards the subject from a second sensor. In response, modulation with a carrier sequence code results in a modulated evoked biological signal. The carrier sequence code has an autocorrelation function. The method includes demodulating the modulated evoked biological signal by calculating a convolution of the modulated evoked biological signal with the carrier sequence code resulting in an evoked biological signal spectrum. The evoked biological signal spectrum has a peak to sideband ratio as a function of the carrier sequence code. The method includes calculating deviations between each element of the sampled evoked biological signal and the peak to sideband ratio and filtering noise artifacts from the sampled evoked biological signal based on the deviations.
Abstract:
Systems and techniques for failsafe detection of vehicle components are provided herein. A system for failsafe detection may include one or more touch sensors determining presence information associated with a number of hands or other appendages an operator of a vehicle has in contact with a steering wheel of the vehicle. The system may include an electronic power steering (EPS) component estimating presence information indicative of whether the operator of the vehicle has hands or other appendages in contact with the steering wheel of the vehicle. The system may include a failsafe component comparing the presence information of the touch sensors with the presence information of the electronic power steering component and generating a component determination for one or more of the touch sensors based on the comparison.
Abstract:
A method for biological signal analysis, including providing a multidimensional sensor array disposed at a position for sensing biological data associated with a person, wherein the multidimensional sensor array includes a plurality of sensors and each sensor of the plurality of sensors is mechanically coupled to a common structural coupling material. The method including selectively receiving an output from each sensor of the plurality of sensors, processing the output from each sensor of the plurality of sensors and outputting a biological signal based on the processing.
Abstract:
Methods of assessing driver behavior include monitoring vehicle systems and driver monitoring systems to accommodate for a slow reaction time, attention lapse and/or alertness of a driver. When it is determined that a driver is drowsy, for example, the response system may modify the operation of one or more vehicle systems. The response system can modify the control of two or more systems simultaneously in response to driver behavior.
Abstract:
A system and method for processing photoplethysmography (PPG) signals in a vehicle. The system and method include receiving a PPG waveform signal from an optical sensor. The system and method also include processing a PPG measurement signal based on the PPG waveform signal. The system and method additionally include receiving a noise waveform signal from at least one of: a seat assembly sensor, a vehicle sensor, and a vehicle system. Additionally, the system and method include processing a motion artifacts measurement signal based on the noise waveform signal. The system and method further include processing a refined PPG signal to suppress the motion artifacts measurement signal from the PPG measurement signal.
Abstract:
A method and a system for determining changes in a body state of an individual including receiving a signal from a monitoring system, where the signal indicates a measurement of cardiac activity of the individual over a period of time and determining at least one signal feature, where the signal feature is a reoccurring event of the signal over the period of time. The method also includes determining a first interval between two successive signal features and determining a second interval between two successive first intervals. A derivative is calculated based on the second interval. Changes in the body state are identified based on the derivative.