Abstract:
A method of forming a semiconductor device that includes forming a gate structure on a fin structure and etching the source and drain region portions of the fin structure to provide a recessed surface. A first semiconductor layer is formed on the recessed surface of the fin structure that is doped to a first conductivity type. A leakage barrier layer is formed on the first semiconductor layer. A second semiconductor layer is formed on the leakage barrier layer. The second semiconductor layer is doped to a second conductivity type.
Abstract:
A method of introducing strain in a channel region of a FinFET device includes forming a fin structure on a substrate, the fin structure having a lower portion comprising a sacrificial layer and an upper portion comprising a strained semiconductor layer; and removing a portion of the sacrificial layer corresponding to a channel region of the FinFET device so as to release the upper portion of the fin structure from the substrate in the channel region.
Abstract:
A method of forming a fin structure that includes forming a plurality of fin structures from a bulk semiconductor substrate and forming a dielectric spacer on a sidewall of each fin structure in the plurality of fin structure. A semiconductor spacer is formed on a sidewall of the dielectric spacer. A dielectric fill is formed in the space between the adjacent fin structures. The semiconductor spacer and a portion of the fin structures that is present below a lower surface of the dielectric spacer are oxidized. Oxidizing a base portion of the fin structures produces a first strain and oxidizing the semiconductor spacer produces a second strain that is opposite the first strain.
Abstract:
After formation of trench capacitors and source and drain regions and gate structures for access transistors, a dielectric spacer is formed on a first sidewall of each source region, while a second sidewall of each source region and sidewalls of drain regions are physically exposed. Each dielectric spacer can be employed as an etch mask during removal of trench top dielectric portions to form strap cavities for forming strap structures. Optionally, selective deposition of a semiconductor material can be performed to form raised source and drain regions. In this case, the raised source regions grow only from the first sidewalls and do not grow from the second sidewalls. The raised source regions can be employed as a part of an etch mask during formation of the strap cavities. The strap structures are formed as self-aligned structures that are electrically isolated from adjacent access transistors by the dielectric spacers.
Abstract:
A method for fabricating a semiconductor device, includes providing a strained silicon on insulator (SSOI) structure, the SSOI structure comprises, a dielectric layer disposed on a substrate, a silicon germanium layer disposed on the dielectric layer, and a strained semiconductor material layer disposed directly on the silicon germanium layer, forming a plurality of fins on the SSOI structure, forming a gate structure over a portion of at least one fin in a nFET region, forming a gate structure over a portion of at least one fin in a pFET region, removing the gate structure over the portion of the at least one fin in the pFET region, removing the silicon germanium layer exposed by the removing, and forming a new gate structure over the portion of the at least one fin in the pFET region, such that the new gate structure surrounds the portion on all four sides.
Abstract:
One embodiment provides a method comprising etching a fin of a fin-shaped field effect transistor (FinFET) to form a reduced fin, and laterally etching the reduced fin to form a fin channel including a first fin channel sidewall and a second fin channel sidewall opposing the first fin channel sidewall. The method further comprises forming a first thin dielectric tunnel and a second thin dielectric tunnel on the first fin channel sidewall and the second fin channel sidewall, respectively. Each thin dielectric tunnel prevents lateral epitaxial crystal growth on the fin channel. The method further comprises etching an insulator layer disposed between the fin channel and a substrate of the FinFET to expose portions of a substrate surface of the substrate. A source epitaxy and a drain epitaxy are formed from vertical epitaxial crystal growth on the exposed portions of the substrate surface after epitaxial deposition.
Abstract:
After formation of trench capacitors and source and drain regions and gate structures for access transistors, a dielectric spacer is formed on a first sidewall of each source region, while a second sidewall of each source region and sidewalls of drain regions are physically exposed. Each dielectric spacer can be employed as an etch mask during removal of trench top dielectric portions to form strap cavities for forming strap structures. Optionally, selective deposition of a semiconductor material can be performed to form raised source and drain regions. In this case, the raised source regions grow only from the first sidewalls and do not grow from the second sidewalls. The raised source regions can be employed as a part of an etch mask during formation of the strap cavities. The strap structures are formed as self-aligned structures that are electrically isolated from adjacent access transistors by the dielectric spacers.
Abstract:
A method for inducing stress within the channel of a semiconductor fin structure includes forming a semiconductor fin on a substrate; forming a fin hard mask layer, multiple isolation regions, and multiple spacers, on the semiconductor fin; forming a gate structure on the semiconductor fin; and oxidizing multiple outer regions of the semiconductor fin to create oxidized stressors that induce compressive stress within the channel of the semiconductor fin. A method for inducing tensile stress within the channel of a semiconductor fin by oxidizing a central region of the semiconductor fin is also provided. Structures corresponding to the methods are also provided.
Abstract:
A method of forming a semiconductor device that includes forming a gate structure on a fin structure and etching the source and drain region portions of the fin structure to provide a recessed surface. A first semiconductor layer is formed on the recessed surface of the fin structure that is doped to a first conductivity type. A leakage barrier layer is formed on the first semiconductor layer. A second semiconductor layer is formed on the leakage barrier layer. The second semiconductor layer is doped to a second conductivity type.
Abstract:
A method of forming a fin structure that includes forming a plurality of fin structures from a bulk semiconductor substrate and forming a dielectric spacer on a sidewall of each fin structure in the plurality of fin structure. A semiconductor spacer is formed on a sidewall of the dielectric spacer. A dielectric fill is formed in the space between the adjacent fin structures. The semiconductor spacer and a portion of the fin structures that is present below a lower surface of the dielectric spacer are oxidized. Oxidizing a base portion of the fin structures produces a first strain and oxidizing the semiconductor spacer produces a second strain that is opposite the first strain.