Abstract:
Embodiments of the present disclosure include one-step synthesis to prepare a hypergolic green Fuel (HGF) propellant from 2-Hydroxyethylhydrazine (HEH) via a “one-step synthesis method”. In addition, embodiments of the present disclosure include fully nitrated HGF and partially nitrated HGF and formulations containing Hydroxyethylhydrazinium Nitrate (HEHN) and acetone, where the HEHN is produced independently.
Abstract:
The invention relates to an integrated process for the production of 5-hydroxymethyl furfural (HMF), K2SO4, levulinic acid and formic acid from κ-carrageenan, the latter being obtained from fresh Kappaphycus alvarezii seaweed biomass after expelling the juice. Mg(HSO4)2 was used in HMF synthesis, with co-production of galactose. The aqueous stream after HMF extraction was treated with the seaweed juice which process facilitated recovery of K2SO4 in pure form. The galactose may be utilised for synthesis of levulinic acid and formic acid before or after K2SO4 recovery or, alternatively, utilised for other purposes. Catalysts required in the synthetic reactions are generated in the process itself while the process energy required is met out of additional supplies of the seaweed biomass which is subjected to combustion/gasification.
Abstract translation:本发明涉及一种从κ-角叉菜胶生产5-羟甲基糠醛(HMF),K 2 SO 4,乙酰丙酸和甲酸的综合方法,后者是在榨出果汁后从新鲜的Kappaphycal alvarezii海藻生物量获得的。 Mg(HSO4)2用于HMF合成,共同生产半乳糖。 HMF萃取后的水流用海藻汁处理,该方法便于纯化形式回收K 2 SO 4。 K2SO4回收前后,半乳糖可用于合成乙酰丙酸和甲酸,或者用于其他目的。 在合成反应中需要的催化剂在工艺本身中产生,而所需的工艺能量通过进行燃烧/气化的海藻生物质的额外供应来满足。
Abstract:
A process and system for separating a light fraction, a bio-distillate fraction, and a heavy fraction from a bio-oil, and for producing a renewable distillate including at least in part the bio-distillate fraction and a stabilizing additive, is provided. In addition, a process and system is provided for upgrading a bio-oil by use of a diluent and/or a recycle stream from the upgrading process to reduce fouling in upgrading equipment, such as a preheater and a hydrodeoxygenation unit.
Abstract:
The present invention relates to a fuel additive formulation that is designed to inhibit and/or reverse phase separation in Ethanol Blended Fuels (EBFs). The additive may further have the characteristics of reducing friction, corrosion, and wear in internal combustion engines that run on EBFs. The fuel additive in accordance with the present invention is a formulation of hexylene glycol and boric acid. Minimization of phase separation and reduction of engine wear and degradation due to friction and deposit formation is expected to result in increased engine efficiency, extension of engine life, and reduction in repair and maintenance costs.
Abstract:
A process for reducing the water and carboxylic acid content of an alcohol composition comprising at least one alcohol having one to four carbon atoms, water and at least one carboxylic acid having from one to four carbon atoms, wherein said process comprises contacting the alcohol composition with a desiccant bed comprising at least one porous inorganic oxide material at elevated temperature, wherein at least one of the porous inorganic oxide material(s) contains Bransted acid sites and/or neutralised Bransted acid sites.
Abstract:
When processing cellulosic biomass, it may be desirable for a digestion unit to operate without being fully depressurized for process efficiency purposes. Methods for processing cellulosic biomass may comprise providing a biomass conversion system comprising a pressurization zone and a digestion unit that are operatively connected to one another; providing cellulosic biomass at a first pressure; introducing at least a portion of the cellulosic biomass into the pressurization zone and pressurizing the pressurization zone to a second pressure higher than the first pressure; after pressurizing the pressurization zone, transferring at least a portion of the cellulosic biomass from the pressurization zone to the digestion unit, which is at a third pressure that is less than or equal to the second pressure but higher than the first pressure; and digesting at least a portion of the cellulosic biomass in the digestion unit to produce a hydrolysate comprising soluble carbohydrates.
Abstract:
The common interchangeable use of a high methanol content fuel for use in all types of internal combustion engines, including cars, trucks, vehicles for transportation use (ships, boats, locomotives, airplanes, etc.), various other equipment and turbines. The engines are converted to be able to use these fuels although further vehicles can be made with components that would allow such fuels to be used. These methanol fuels are renewable and environmentally benign when produced from carbon dioxide capture and recycling of their combustion or other use.
Abstract:
The present disclosure relates to bioengineering approaches for producing biofuel and, in particular, to the use of a C1 metabolizing microorganism reactor system for converting C1 substrates, such as methane or methanol, into biomass and subsequently into biofuels, bioplastics, or the like.
Abstract:
High octane unleaded aviation fuel compositions having high aromatics content and CHN content of at least 98 wt %, less than 2 wt % of oxygen content, an adjusted heat of combustion of at least 43.5 MJ/kg, a vapor pressure in the range of 38 to 49 kPa is provided.
Abstract:
Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.