Abstract:
A refractory oxide coated fiber is provided including a primary fiber material and a refractory oxide coating over the primary fiber material. Further, a method of making a refractory oxide coated fiber is provided, which includes: providing a first precursor-laden environment, the first precursor-laden environment including a primary precursor; promoting fiber growth within the first precursor-laden environment using laser heating; and providing a second precursor-laden environment to promote coating of the fiber, the second precursor-laden environment comprising a refractory oxide precursor, and the coating producing a refractory oxide coating over the fiber with a hexagonal microstructure.
Abstract:
Apparatus for nanofabrication on an unconventional substrate including a patterned pliable membrane mechanically coupled to a membrane support structure, a substrate support structure to receive a substrate for processing, and an actuator to adjust the distance between the pliable membrane and the substrate. Nanofabrication on conventional and unconventional substrates can be achieved by transferring a pre-formed patterned pliable membrane onto the substrate using a transfer probe or non-stick sheet, followed by irradiating the substrate through the patterned pliable membrane so as to transfer the pattern on the pliable membrane into or out of the substrate. The apparatus and methods allow fabrication of diamond photonic crystals, fiber-integrated photonic devices and Nitrogen Vacancy (NV) centers in diamonds.
Abstract:
The subject of the invention is a process for obtaining a substrate (1) provided on at least one of its sides with a coating (2), comprising a step of depositing said coating (2) then a step of heat treatment of said coating using a main laser radiation (4), said process being characterized in that at least one portion (5, 14) of the main laser radiation (4) transmitted through said substrate (1) and/or reflected by said coating (2) is redirected in the direction of said substrate in order to form at least one secondary laser radiation (6, 7, 18).
Abstract:
Embodiments of the invention provide a method and apparatus for depositing a layer on a substrate. In one embodiment, the method includes exposing a surface of the substrate disposed within a processing chamber to a fluid precursor, directing an electromagnetic radiation generated from a radiation source to a light scanning unit such that the electromagnetic radiation is deflected and scanned across the surface of the substrate upon which a material layer is to be formed, and initiating a deposition process with the electromagnetic radiation having a wavelength selected for photolytic dissociation of the fluid precursor to deposit the material layer onto the surface of the substrate. The radiation source may comprise a laser source, a bright light emitting diode (LED) source, or a thermal source. In one example, the radiation source is a fiber laser producing output in the ultraviolet (UV) wavelength range.
Abstract:
Ag/C crystalline nanocomposite films and a method of forming the films with controllable Ag/C molar ratios using a concurrent excimer laser-induced ablation of a silver target and a hydrocarbon gas under a vacuum atmosphere. Metal/Carbon nanocomposites prepared by concurrent irradiation of a metal target, in the presence of a hydrocarbon gas, during an excimer laser induced process.
Abstract:
A transistor having high field-effect mobility is provided. A transistor having stable electrical characteristics is provided. A transistor having low off-state current (current in an off state) is provided. Alternatively, a semiconductor device including the transistor is provided. The semiconductor device includes a first insulating film, an oxide semiconductor film over the first insulating film, a second insulating film over the oxide semiconductor film, and a conductive film overlapping with the oxide semiconductor film with the first insulating film or the second insulating film provided between the oxide semiconductor film and the conductive film. The composition of the oxide semiconductor film changes continuously between the first insulating film and the second insulating film.
Abstract:
Methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces are disclosed herein. In one embodiment, a method includes depositing molecules of a gas onto a microfeature workpiece in the reaction chamber and selectively irradiating a first portion of the molecules on the microfeature workpiece in the reaction chamber with a selected radiation without irradiating a second portion of the molecules on the workpiece with the selected radiation. The first portion of the molecules can be irradiated to activate the portion of the molecules or desorb the portion of the molecules from the workpiece. The first portion of the molecules can be selectively irradiated by impinging the first portion of the molecules with a laser beam or other energy source.
Abstract:
An atmospheric, Laser-based Chemical Vapor Deposition (LCVD) technique provides highly localized deposition of material to mitigate damage sites on an optical component. The same laser beam can be used to deposit material as well as for in-situ annealing of the deposited material. The net result of the LCVD process is in-filling and planarization of a treated site, which produces optically more damage resistant surfaces. Several deposition and annealing steps can be interleaved during a single cycle for more precise control on amount of deposited material as well as for increasing the damage threshold for the deposited material.
Abstract:
Embodiments of the invention provide a method and apparatus for depositing a layer on a substrate. In one embodiment, the method includes exposing a surface of the substrate disposed within a processing chamber to a fluid precursor, directing an electromagnetic radiation generated from a radiation source to a light scanning unit such that the electromagnetic radiation is deflected and scanned across the surface of the substrate upon which a material layer is to be formed, and initiating a deposition process with the electromagnetic radiation having a wavelength selected for photolytic dissociation of the fluid precursor to deposit the material layer onto the surface of the substrate. The radiation source may comprise a laser source, a bright light emitting diode (LED) source, or a thermal source. In one example, the radiation source is a fiber laser producing output in the ultraviolet (UV) wavelength range.
Abstract:
A method of fabricating quantum confinements is provided. The method includes depositing, using a deposition apparatus, a material layer on a substrate, where the depositing includes irradiating the layer, before a cycle, during a cycle, and/or after a cycle of the deposition to alter nucleation of quantum confinements in the material layer to control a size and/or a shape of the quantum confinements. The quantum confinements can include quantum wells, nanowires, or quantum dots. The irradiation can be in-situ or ex-situ with respect to the deposition apparatus. The irradiation can include irradiation by photons, electrons, or ions. The deposition is can include atomic layer deposition, chemical vapor deposition, MOCVD, molecular beam epitaxy, evaporation, sputtering, or pulsed-laser deposition.