Abstract:
An implantation apparatus includes a scanning assembly that effects a relative movement between an ion beam and a semiconductor substrate along a first scan direction and along a second scan direction orthogonal to the first scan direction. A tilt assembly changes a tilt angle θ between a beam axis of the ion beam and a normal to a main surface of the semiconductor substrate from a first tilt angle θ1 to a second tilt angle θ2, wherein an angular span Δθ between the first tilt angle θ1 and the second tilt angle θ2 is at least 5°. A control unit controls the tilt assembly to continuously change the tilt angle θ during the relative movement between the ion beam and the semiconductor substrate.
Abstract:
Various embodiments provide a method of reducing a sheet resistance in an electronic device encapsulated at least partially in an encapsulation material, wherein the method comprises: providing an electronic device comprising a multilayer structure and being at least partially encapsulated by an encapsulation material; and locally introducing energy into the multilayer structure for reducing a sheet resistance.
Abstract:
By directing an ion beam with a beam divergence θ on a process surface of a semiconductor substrate, parallel electrode trenches are formed in the semiconductor substrate. A center axis of the directed ion beam is tilted to a normal to the process surface at a tilt angle α, wherein at least one of the tilt angle α and the beam divergence θ is not equal to zero. The semiconductor substrate is moved along a direction parallel to the process surface during formation of the electrode trenches. A conductive electrode is formed in the electrode trenches, wherein first sidewalls of the electrode trenches are tilted to the normal by a first slope angle φ1 with φ1 =(α+θ/2) and second sidewalls are tilted to the normal by a second slope angle φ2 with φ2 =(α−θ/2).
Abstract:
A method for implanting ions into a semiconductor substrate includes performing a test implantation of ions into a semiconductor substrate. The ions of the test implantation are implanted with a first implantation angle range over the semiconductor substrate. Further, the method includes determining an implantation angle offset based on the semiconductor substrate after the test implantation and adjusting a tilt angle of the semiconductor substrate with respect to an implantation direction based on the determined implantation angle offset. Additionally, the method includes performing at least one target implantation of ions into the semiconductor substrate after the adjustment of the tilt angle. The ions of the at least one target implantation are implanted with a second implantation angle range over the semiconductor substrate. Further, the first implantation angle range is larger than the second implantation angle range.
Abstract:
By directing an ion beam with a beam divergence θ on a process surface of a semiconductor substrate, parallel electrode trenches are formed in the semiconductor substrate. A center axis of the directed ion beam is tilted to a normal to the process surface at a tilt angle α, wherein at least one of the tilt angle α and the beam divergence θ is not equal to zero. The semiconductor substrate is moved along a direction parallel to the process surface during formation of the electrode trenches. A conductive electrode is formed in the electrode trenches, wherein first sidewalls of the electrode trenches are tilted to the normal by a first slope angle φ 1 with φ 1=(α+0/2) and second sidewalls are tilted to the normal by a second slope angle φ 2 with φ 2=(α−θ/2).
Abstract:
A transistor cell includes, in a semiconductor body, a drift region of a first doping type, a source region of the first doping type, a body region of a second doping type, and a drain region of the first doping type. The body region is arranged between the source and drift regions. The drift region is arranged between the body and drain regions. A gate electrode is adjacent the body region and dielectrically insulated from the body region by a gate dielectric, and a field electrode is dielectrically insulated from the drift region by a field electrode dielectric. The drift region includes an avalanche region having a higher doping concentration than sections of the drift region adjacent the avalanche region and which is spaced apart from the field electrode dielectric in a direction perpendicular to the current flow direction. The field electrode is arranged in a needle-shaped trench.
Abstract:
Disclosed is a method for processing a semiconductor wafer. The method includes forming an oxygen containing region in the semiconductor wafer, wherein forming the oxygen containing region includes introducing oxygen via a first surface into the semiconductor wafer. The method further includes creating vacancies at least in the oxygen containing region and annealing at least the oxygen containing region in an annealing process so as to form oxygen precipitates.
Abstract:
A first doped region is formed in a single crystalline semiconductor substrate. Light ions are implanted through a process surface into the semiconductor substrate to generate crystal lattice vacancies between the first doped region and the process surface, wherein a main beam axis of an implant beam used for implanting the light ions deviates by at most 1.5 degree from a main crystal direction along which channeling of the light ions occurs. A second doped region with a conductivity type opposite to the first doped region is formed based on the crystal lattice vacancies and hydrogen atoms.
Abstract:
A method for forming a semiconductor device includes implanting a predefined dose of protons into a semiconductor substrate. Further, the method comprises controlling a temperature of the semiconductor substrate during the implantation of the predefined dose of protons so that the temperature of the semiconductor substrate is within a target temperature range for more than 70% of an implant process time used for implanting the predefined dose of protons. The target temperature range reaches from a lower target temperature limit to an upper target temperature limit. Further, the lower target temperature limit is equal to a target temperature minus 30° C. and the upper target temperature limit is equal to the target temperature plus 30° C. and the target temperature is higher than 80° C.
Abstract:
Disclosed are a method and a semiconductor device. The method includes implanting recombination center atoms via a first surface into a semiconductor body, and causing the implanted recombination center atoms to diffuse in the semiconductor body in a first diffusion process.