摘要:
A semiconductor device includes a semiconductor substrate, a lower insulating film formed on the semiconductor substrate, an interconnect-forming metal film provided so as to fill a recess formed in the surficial portion of the lower insulating film, and containing copper as a major constituent, an upper insulating film formed on the lower insulating film, and a metal-containing layer formed between the lower insulating film and the upper insulating film, and containing a metal different from copper. The metal-containing layer includes a first region in contact with the interconnect-forming metal film, and a second region in contact with the lower insulating film, and having a composition different from that of the first region, and contains substantially no nitrogen at least in the first region.
摘要:
An oxide film formed on the surface of copper film of an electrode pad is cleaned by oxalic acid after unevenness is formed on the surface of copper film by treating the surface with organic acid. Thereby, stable resistance is obtained when carrying out a characteristic inspection by bringing a probe into contact with the electrode pad, and it is easily recognized by observation through a microscope that the probe is brought into contact with the electrode pad. In addition, wettability with respect to solder is satisfactory, and it is possible to favorably form a solder bump on the electrode pad.
摘要:
An object of the invention is to provide a semiconductor device which includes a barrier metal having high adhesiveness and diffusion barrier properties and a method of manufacturing the semiconductor device. The invention provides a semiconductor device manufacturing method including forming a first layer made of a material containing silicon on a base substance; forming a second layer containing metal and nitrogen on the first layer; and exposing the second layer to active species obtained from plasma in an atmosphere including reducing gas.
摘要:
A lubrication structure for splash lubrication in an engine includes an oil collector formed as a depression in the outer peripheral surface of the crank pin and an oil groove provided on the big-end of the connecting rod. The oil collector is formed approximately at the center, in an axial direction, of the crank pin. The position of the oil collector is chosen so as to be displaced from an explosive force in an expansion cycle of the engine. The oil groove is provided on the big-end of the connecting rod, and has a first end and a second end. The first end is open in the inner peripheral surface at the center thereof in an axial direction, and the second end is open into the crank case. The oil collector receives oil stored in the crank case and the oil is transferred to the oil groove.
摘要:
A ceiling surface of a rocker cover mounted on a top of a cylinder head has an oil guide groove and an oil dripping portion. The oil guide groove extends along a rotation direction of a chain and faces the chain for guiding lubricating oil droplets separated from the chain into a single flow in a certain direction. The oil dripping portion is continuous with the oil guide groove and protruding toward a valve-operating device for dripping the lubricating oil guided by the oil guide groove onto the valve-operating device. Oil droplets thrown off from the chain are collected by the oil guide groove and dripped onto the valve-operating device via the oil dripping portion. Therefore, it can effectively supply the oil to a position where the valve-operating cam slidably contacts with the slipper, thereby improving the frictional resistance of the valve-operating device.
摘要:
A cylinder head is provided with a gas-liquid separation chamber apart from a chain chamber. The gas-liquid separation chamber is communicated with a crank chamber via a gas inlet and the chain chamber. The gas inlet is opened in the side direction of a chain within the chain chamber, and has an inclined bottom surface. At an upper end portion of the gas-liquid separation chamber is mounted an oil flow back chamber, which has an opening to communicate with a chain chamber. A blow-by gas in the crank chamber is guided into the gas-liquid separation chamber, where an oil component is separated, and then fed into another gas-liquid separation chamber in order to separate the oil component in two steps. Thereby, the oil component in the blow-by gas can be securely separated without adding new components or causing complication in a structure of breather system of an engine.
摘要:
A protective layer in a ferroelectric integrated circuit contains small amounts of oxygen to protect ferroelectric oxide material against hydrogen degradation during the fabrication process. Typically, the protective layer is a hydrogen diffusion barrier layer formed to cover a thin film of ferroelectric oxide material. In one method, a small amount of oxygen is included in the sputter atmosphere during deposition of a hydrogen diffusion barrier or a metallized wiring layer. The oxygen forms oxides that inhibit diffusion of hydrogen towards the ferroelectric oxide material. The oxygen forms a concentration gradient so that the oxygen concentration in the interior of the protective layer is zero, and the oxygen concentration near the surfaces of the layer is about two weight percent.
摘要:
Disclosed is a process for expressing a gene and producing a metabolic product formed by the gene by culturing a transformant microorganism carrying a recombinant DNA constructed of a DNA fragment having at least one gene to be expressed and a vector DNA, at least one of which is foreign to the host microorganism.
摘要:
A novel lysozyme-sensitive microorganism belonging to the genus Corynebacterium or Brevibacterium and having a sensitivity to lysozyme at a concentration of less than 25 .mu.g/ml is provided from selected mutants. This novel microorganism is especially suitable for use in recombinant DNA technology.
摘要:
An enhanced utilization efficiency of gases can be presented and an improved deposition characteristics are presented, when a film is deposited with a plurality of gases. A deposition apparatus 100 includes: a reaction chamber 102 for depositing a film; a first gas supply line 112 and a second gas supply line 152 for supplying a first source material A and a gas B to a reaction chamber 102, respectively; and an exciting unit 106 that is capable of exciting a gas supplied in the reaction chamber 102 to form a plasma. In the deposition apparatus 100 having such configuration, a deposition operation is performed by: a first operation for supplying a gas derived from a first source material A and a gas B in the reaction chamber 102 to cause the gas derived from a first source material A adsorbed on the substrate, thereby forming a deposition layer; and a second operation for supplying a second gas in reaction chamber 102, and treating the deposition layer with the gas in a condition of being plasma-excited.