Abstract:
A substrate includes a first dielectric layer, a magnetic core at least partially in the first dielectric layer, where the magnetic core comprises a first non-horizontal thin film magnetic (TFM) layer. The substrate also includes a first inductor that includes a plurality of first interconnects, where the first inductor is positioned in the substrate to at least partially surround the magnetic core. The magnetic core may further include a second non-horizontal thin film magnetic (TFM) layer. The magnetic core may further include a core layer. The magnetic core may further include a third thin film magnetic (TFM) layer, and a fourth thin film magnetic (TFM) layer that is substantially parallel to the third thin film magnetic (TFM) layer.
Abstract:
A method includes forming a first conductive spiral and a second conductive spiral of a spiral inductor coupled to a substrate. The second conductive spiral overlays the first conductive spiral. A first portion of an innermost turn of the spiral inductor has a first thickness in a direction perpendicular to the substrate. The first portion of the innermost turn includes a first portion of the first conductive spiral and does not include the second conductive spiral. A second portion of the innermost turn includes a first portion of the second conductive spiral. A portion of an outermost turn of the spiral inductor has a second thickness in the direction perpendicular to the substrate. The second thickness is greater than the first thickness. The portion of the outermost turn includes a second portion of the first conductive spiral and a second portion of the second conductive spiral.
Abstract:
Methods and apparatus for metal semiconductor wafer bonding for high-Q devices are provided. An exemplary capacitor includes a first plate formed on a glass substrate, a second plate, and a dielectric layer. No organic bonding agent is used between the first plate and the glass substrate, and the dielectric layer can be an intrinsic semiconductor. A extrinsic semiconductor layer that is heavily doped contacts the dielectric layer. The dielectric and extrinsic semiconductor layers are sandwiched between the first and second plates. An intermetallic layer is formed between the first plate and the dielectric layer. The intermetallic layer is thermo compression bonded to the first plate and the dielectric layer. The capacitor can be coupled in a circuit as a high-Q capacitor and/or a varactor, and can be integrated with a mobile device.
Abstract:
Some novel features pertain to a semiconductor device that includes a substrate, a first cavity that traverses the substrate. The first cavity is configured to be occupied by a interconnect material (e.g., solder ball). The substrate also includes a first metal layer coupled to a first side wall of the first cavity. The substrate further includes a first integrated passive device (IPD) on a first surface of the substrate, the first IPD coupled to the first metal layer. In some implementations, the substrate is a glass substrate. In some implementations, the first IPD is one of at least a capacitor, an inductor and/or a resistor. In some implementations, the semiconductor device further includes a second integrated passive device (IPD) on a second surface of the substrate. The second IPD is coupled to the first metal layer.
Abstract:
A device includes a stress relief region between at least two stress domains of a substrate (e.g., of a semiconductor die or other integrated circuit). The stress relief region includes a conductive structure electrically coupling circuitries of the stress domains between which the conductive structure is disposed.
Abstract:
An apparatus includes a varactor having a first contact that is located on a first side of a substrate. The varactor includes a second contact that is located on a second side of the substrate, and the second side is opposite the first side. The apparatus further includes a signal path between the first contact and the second contact.
Abstract:
Some novel features pertain to an integrated device package (e.g., die package) that includes a package substrate, a die, an encapsulation layer and a first set of metal layers. The package substrate includes a first surface and a second surface. The die is coupled to the first surface of the package substrate. The encapsulation layer encapsulates the die. The first set of metal layers is coupled to a first exterior surface of the encapsulation layer. In some implementations, the first set of metal layers is configured to operate as a die-to-wire connector of the integrated device package. In some implementations, the integrated device package includes a second set of metal layers coupled to the second surface of the package substrate. In some implementations, the integrated device package includes a second set of metal layers coupled to a second exterior surface of the encapsulation layer.
Abstract:
An apparatus is disclosed that includes a frequency multiplexer circuit coupled to an input node and configured to receive an input signal via the input node. The frequency multiplexer circuit comprises a first filter circuit, a second filter circuit, and a third filter circuit. The apparatus also includes a switching circuit that is configurable to couple at least two of a first output of the first filter circuit, a second output of the second filter circuit, or a third output of the third filter circuit to a single output port.
Abstract:
A low-profile passive-on-package is provided that includes a plurality of recesses that receive corresponding interconnects. Because of the receipt of the interconnects in the recesses, the passive-on-package has a height that is less than a sum of a thickness for the substrate and an interconnect height or diameter.
Abstract:
An apparatus includes a multi spiral inductor that includes a first spiral and a second spiral. The first spiral includes a first turn, a second turn, and a third turn. The first turn is adjacent to and separated from the second turn by first spacing. The second turn is adjacent to and separated from the third turn by second spacing. The first spacing is different from the second spacing.