Graphene nanoribbons, method of fabrication and their use in electronic devices
    73.
    发明授权
    Graphene nanoribbons, method of fabrication and their use in electronic devices 有权
    石墨烯纳米带,其制造方法及其在电子设备中的应用

    公开(公告)号:US08361853B2

    公开(公告)日:2013-01-29

    申请号:US12902620

    申请日:2010-10-12

    IPC分类号: H01L29/06 H01L21/336

    摘要: The present disclosure provides a semiconductor structure including a nanoribbon-containing layer of alternating graphene nanoribbons separated by alternating insulating ribbons. The alternating graphene nanoribbons are parallel to a surface of an underlying substrate and, in some embodiments, might be oriented along crystallographic directions of the substrate. The alternating insulating ribbons may comprise hydrogenated graphene, i.e., graphane, fluorinated graphene, or fluorographene. The semiconductor structure mentioned above can be formed by selectively converting portions of an initial graphene layer into alternating insulating ribbons, while the non-converted portions of the initial graphene form the alternating graphene nanoribbons. Semiconductor devices such as, for example, field effect transistors, can be formed atop the semiconductor structure provided in the present disclosure.

    摘要翻译: 本公开提供了一种半导体结构,其包括由交替的绝缘带分开的交替的石墨烯纳米带的纳米带层。 交替的石墨烯纳米带平行于下面的基底的表面,并且在一些实施方案中可以沿着基底的结晶方向取向。 交替的绝缘带可以包括氢化石墨烯,即塔帕尼,氟化石墨烯或荧光荧光物质。 上述半导体结构可以通过将初始石墨烯层的部分选择性地转换为交替绝缘带而形成,而初始石墨烯的未转化部分形成交替的石墨烯纳米带。 诸如场效应晶体管的半导体器件可以形成在本公开中提供的半导体结构的顶部。

    Advanced low k cap film formation process for nano electronic devices
    76.
    发明授权
    Advanced low k cap film formation process for nano electronic devices 有权
    用于纳米电子器件的高级低k帽成膜工艺

    公开(公告)号:US08212337B2

    公开(公告)日:2012-07-03

    申请号:US11972175

    申请日:2008-01-10

    IPC分类号: H01L23/58 H01L23/48

    摘要: A carbon-rich silicon carbide-like dielectric film having a carbon concentration of greater than, or equal to, about 30 atomic % C and a dielectric constant of less than, or equal to, about 4.5 is provided. In some embodiments, the dielectric film may optionally include nitrogen. When nitrogen is present, the carbon-rich silicon carbide-like dielectric film has a concentration nitrogen that is less than, or equal, to about 5 atomic % nitrogen. The carbon-rich silicon carbide-like dielectric film can be used as a dielectric cap layer in an interconnect structure. The inventive dielectric film is highly robust to UV curing and remains compressively stressed after UV curing. Moreover, the inventive dielectric film has good oxidation resistance and prevents metal diffusion into an interconnect dielectric layer. The present invention also provides an interconnect structure including the inventive dielectric film as a dielectric cap. A method of fabricating the inventive dielectric film is also provided.

    摘要翻译: 提供碳浓度大于或等于约30原子%C并且介电常数小于或等于约4.5的富含碳的碳化硅状电介质膜。 在一些实施例中,电介质膜可以任选地包括氮。 当存在氮时,富含碳的碳化硅状电介质膜具有小于或等于约5原子%氮的浓度氮。 富碳碳化硅状电介质膜可以用作互连结构中的电介质盖层。 本发明的电介质膜对UV固化具有很强的鲁棒性,并且在UV固化后保持压缩应力。 此外,本发明的电介质膜具有良好的抗氧化性,并且防止金属扩散到互连电介质层中。 本发明还提供一种互连结构,其包括作为电介质盖的本发明的电介质膜。 还提供了制造本发明的电介质膜的方法。

    CONTINUOUS METAL SEMICONDUCTOR ALLOY VIA FOR INTERCONNECTS
    77.
    发明申请
    CONTINUOUS METAL SEMICONDUCTOR ALLOY VIA FOR INTERCONNECTS 有权
    连续金属半导体合金通过互连

    公开(公告)号:US20120156857A1

    公开(公告)日:2012-06-21

    申请号:US13405598

    申请日:2012-02-27

    IPC分类号: H01L21/28 H01L21/30

    摘要: Methods of forming a semiconductor structure including a semiconductor nanowire or epitaxial semiconductor material which extends from at least a surface of source region and the drain region are provided. The methods include converting an upper portion of the source region and the drain region and the semiconductor nanowire or epitaxial semiconductor material into a continuous metal semiconductor alloy. The continuous metal semiconductor alloy includes a lower portion that is contained within an upper surface of each of the source region and the drain region, and a vertical pillar portion extending upwardly from the lower portion.

    摘要翻译: 提供形成半导体结构的方法,该半导体结构包括从源极区域和漏极区域的至少一个表面延伸的半导体纳米线或外延半导体材料。 所述方法包括将源极区域和漏极区域以及半导体纳米线或外延半导体材料的上部转换为连续金属半导体合金。 连续金属半导体合金包括包含在源极区域和漏极区域中的每一个的上表面内的下部以及从下部向上延伸的垂直柱部分。