摘要:
Connected in series with a thyristor (1) are two IGFETs (2, 3) one to the anode side and the other to the cathode side. Between the inner thyristor zones (6, 8) and the outer IGFET connections, a threshold circuit (10, 11) is connected to each. The threshold voltage of the threshold circuit is higher than that of the p-n junctions between the outer and adjacent inner thyristor zones (6, 7; 8, 9) including the voltage drop of the conducting IGFET. The switch is turned off by operating to turn off the IGFETs. The current then flows via the threshold elements through the two inner zones (6, 8). The charge carriers of this diode are evacuated very quickly, since carrier injection from the outer zones is no longer possible.
摘要:
An IGFET assembly, includes a semiconductor substrate of a given first conductivity type having first and second surfaces, an IGFET having at least one channel zone of a second conductivity type opposite the first given conductivity type embedded in the first surface of the substrate, a source zone of the first conductivity type embedded planar in the channel zone, a drain zone adjacent the first surface of the substrate, a drain electrode connected to the second surface of the substrate, an insulating layer disposed on the first surface of the substrate, at least one gate electrode disposed on the insulating layer, at least one injector zone of the second conductivity type embedded in the first surface of the substrate, a contact for connecting the injector zone to a voltage source, an emitter zone of the first conductivity type embedded in the injector zone, the emitter zone having a heavier doping than the injector zone, the injector zone including a part thereof emerging to the first surface of the substrate, the drain zone having a part thereof emerging to the first surface of the substrate between the channel zone and the injector zone, the parts of the injector and drain zones emerging to the first surface of the substrate being covered by the gate electrode, and the injector zone having a surface and having a doping, at least at the surface thereof, forming a channel in the surface of the injector zone connecting the drain zone to the emitter zone when a voltage is present switching the IGFET into conduction.
摘要:
To attain a comparatively high breakdown voltage at a high avalanche strength and with the physical size simultaneously being as small as possible, the invention proposes constructing a transistor device in a semiconductor material region in which a first source/drain region is used as a source region and in which the source region has a comparatively reduced surface charge or surface charge density.
摘要:
A panel has a baseplate with an upper first metallic layer and a multiplicity of a vertical semiconductor components. The vertical semiconductor components in each case have a first side with a first load electrode and a control electrode and an opposite second side with a second load electrode. The second side of the semiconductor components is in each case mounted on the metallic layer of the baseplate. The semiconductor components are arranged in such a way that edge sides of adjacent semiconductor components are separated from one another. A second metallic layer is arranged in separating regions between the semiconductor components.
摘要:
A semiconductor wafer is provided with a wiring structure, and semiconductor chip positions arranged in rows and columns. The semiconductor wafer has at least one coating (6) as a self-supporting dimensionally stable substrate layer (4), and/or as a wiring structure composed of conductive, high-temperature-resistant material. The coating material (6) of the substrate layer (4) and/or of the wiring structure has a ternary carbide and/or a ternary nitride and/or carbon.
摘要:
One embodiment of the invention relates to a component arrangement having a semiconductor chip, a chip carrier, a contact piece and a package. The semiconductor chip includes a first load terminal, a second load terminal and a control terminal, with the first load terminal and the second load terminal being arranged on mutually opposite sides of the semiconductor chip. The semiconductor chip is arranged on the chip carrier and is electrically and thermally conductively connected to the first load terminal. The contact piece is arranged on the second load terminal and is electrically and thermally conductively connected to it. The package is formed from a dielectric compound, which surrounds the semiconductor chip, the chip carrier and the contact piece. The chip carrier is exposed on a first side of the package, the contact piece is exposed on a second side of the package opposite the first side. A connecting leg is passed out of the package and is electrically conductively connected to the control terminal. One embodiment of the invention furthermore relates to a component cascade, in which a plurality of component arrangements are arranged on one another in the form of a stack.
摘要:
A semiconductor component having a semiconductor body comprises a blocking pn junction, a source zone of a first conductivity type and bordering on a zone forming the blocking pn junction of a second conductivity type complementary to the first conductivity type, and a drain zone of the first conductivity type. The side of the zone of the second conductivity type faces the drain zone forming a first surface, and in the region between the first surface and a second surface areas of the first and second conductivity type are nested in one another. The areas of the first and second conductivity type are variably so doped that near the first surface doping atoms of the second conductivity type predominate, and near the second surface doping atoms of the first conductivity type predominate. Furthermore a plurality of floating zones of the first and second conductivity type is provided.
摘要:
The invention relates to a method for producing a semiconductor component including semiconductor areas of different conductivity types which are alternately positioned in a semiconductor body. The semiconductor areas of different conductivity types extend at least from one first zone to a position near a second zone. Because of variable doping in trenches and in the trench fillings, an electric field is generated which increases from both the first zone and the second zone.
摘要:
An SOI cell includes a semiconductor body having at least one insulator layer. A polycrystalline zone doped with a dopant of a first conductivity type is grown on the insulator layer. The polycrystalline zone is adjoined outside the region of the insulator layer by a semiconductor region, which is doped with the dopant of the first conduction type that has been diffused out of the polycrystalline zone. A dopant source having a dopant of a second conductivity type is also provided. A zone having the dopant of the second conductivity type is formed by diffusing the dopant out of the dopant source.
摘要:
The invention relates to a field effect-controllable semiconductor component of vertical or lateral design i.e. MOSFETs and IGBTs. In this case, depletion zones and complementary depletion zones of opposite conduction types are introduced in the source-drain load path, in the semiconductor body, i.e. in the inner zone in the case of vertical components and in the drift zone in the case of lateral components, the concentration of the regions doped by the first conduction type corresponding approximately to the concentration of the regions doped by the second conduction type.