Abstract:
An integrated micro-ceramic chemical plant having a unitary ceramic body formed from multiple ceramic layers in the "green" state which are sintered together including the unitary ceramic body defining a catalytic reaction chamber position and a first and second passages for providing communication with the catalytic reaction chamber position so that two or more fluids may be delivered to such reaction chamber position for reaction. The integrated micro-ceramic chemical plant further includes a unitary ceramic body defining a receiving chamber which includes the catalytic reaction chamber position, a movable member insertable into the receiving chamber and defining a plurality of catalytic reaction chambers. The movable member moves to the catalytic reaction chamber position where one of the catalytic reaction chambers is in communication with the first and second passages to cause the catalytic reaction of the fluids to produce reaction products.
Abstract:
Systems and methods are disclosed for synthesizing one or more simple alcohols from mixtures including organic acids, water, and a superparamagnetic catalyst exposed to fluctuating magnetic fields under ambient conditions.
Abstract:
Microfluidic radiopharmaceutical production system and process for synthesizing per run approximately, but not less than, ten (10) unit doses of radiopharmaceutical biomarker for use in positron emission tomography (PET). A radioisotope from an accelerator or other radioisotope generator is introduced into a reaction vessel, along with organic and aqueous reagents, and the mixture heated to synthesize a solution of a pre-selected radiopharmaceutical. The solution is purified by passing through a combination of solid phase extraction purification components, trap and release components, and a filter. The synthesis process reduces waste and allows for production of biomarker radiopharmaceuticals on site and close to the location where the unit dose will be administered to the patient. On-site, as-needed production of radiopharmaceuticals in small doses reduces the time between synthesis of the radiopharmaceutical and administration of that radiopharmaceutical, minimizing loss of active isotopes through decay and allowing production of lesser amounts of radioisotopes overall.
Abstract:
Methods and devices for a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in a fast, efficient and compact manner are disclosed. In particular, the various embodiments of the present invention provide an automated, stand-alone, hands-free operation of the entire radiosynthesis cycle on a microfluidic device with unrestricted gas flow through the reactor, starting with target water and yielding purified PET radiotracer within a period of time shorter than conventional chemistry systems. Accordingly, one aspect of the present invention is related to a microfluidic chip for radiosynthesis of a radiolabeled compound, comprising a reaction chamber, one or more flow channels connected to the reaction chamber, one or more vents connected to said reaction chamber, and one or more integrated valves to effect flow control in and out of said reaction chamber.
Abstract:
A microreactor may include a reaction channel having at least one curved microchannel, the at least one curved microchannel having an outer and inner curved surfaces and being configured to generate a centrifugal force, an inlet configured to supply at least one reactant into the reaction channel, and an outlet bifurcated into a first sub-outlet in communication with the inner curved surface of the at least one curved microchannel and a second sub-outlet in communication with the outer curved surface of the at least one curved microchannel.
Abstract:
The invention relates to a device for separation of substance mixtures on the micro scale. The invention further relates to a process for separating substance mixtures using the inventive device. The device is a device for separating substance mixtures and for performing chemical reactions between immiscible fluid media on the micro scale, comprising a first channel plate with at least one first process channel for a first fluid medium, an inlet and an outlet, and a connecting or distributing channel in each case, which connects the inlet to the first process channel, and a further connecting or distributing channel which connects the first process channel to the outlet, a second channel plate with at least one second process channel for a second fluid medium immiscible with the first, an inlet and an outlet, and a connecting or distributing channel in each case, which connects the inlet to the second process channel, and a further connecting or distributing channel which connects the second process channel to the outlet, and a microscreen as a separating means between the two process channel, wherein the microscreen has a multitude of orifices which have an aspect ratio of 1.5 to 10.
Abstract:
A microscreen and its production method for filtering particles in microfluidics applications. The microscreen includes an at least regionally p-doped Si substrate having a recess, a macroporous membrane connected to the Si substrate via n-doped regions, the recess of the Si substrate being situated directly under the membrane to form a cavity.
Abstract:
A method of bonding a capillary tube made of a thermally deformable material to a passage in a glass wafer comprising the steps of treating the surface of the capillary tube to render the surface bondable and wettable by a conventional epoxy resin; inserting a support inside the capillary to prevent inward deformation of the capillary during subsequent fabricating steps; inserting the supported capillary inside the port on the wafer; heating an end of the capillary proximate a bottom portion of the port to effect melting of a portion of the heated end of the capillaries; moving the melted end of the capillary into contact with a wall of the port at a desired location for the capillary in the port, thus forming a temporary seal between the capillary and the wall of the port; and introducing an epoxy around the capillary to bind the capillary to the wafer.
Abstract:
A “plug-n-play” modular microfluidic system is described herein which can be made by connecting multiple microfluidic components together to form a larger integrated system. For example, the modular microfluidic system includes a motherboard with interconnecting channels and integrated electrodes (or holes for electrodes to pass) which provide electronic connections to external data acquisition and system control devices. The modular microfluidic system can also include channel inserts (which are placed in the channels of the motherboard), heater units, actuator units, fitting components and microchips/modules with different functionalities which are placed on the motherboard.
Abstract:
Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.