Abstract:
The inventive vehicle braking control device performs a brake assist control of increasing a braking force for avoiding a collision of a vehicle at a more appropriate time. The device comprises a portion which acquires an estimated time until a vehicle reaches to an obstacle; a portion which judges based on a braking operation amount and a braking operation speed value if the driver performed an urgent braking operation; and a portion which determines the start of a braking force assist control when an urgent braking operation is judged in a case that the estimated time is less than a first predetermined time, wherein, if the estimated time is less than a second predetermined time shorter than the first predetermined time, the urgent braking operation is judged when the braking operation amount exceeds a threshold value irrespective of the braking operation speed value.
Abstract:
Methods of assessing driver behavior include monitoring vehicle systems and driver monitoring systems to accommodate for a slow reaction time, attention lapse and/or alertness of a driver. When it is determined that a driver is drowsy, for example, the response system may modify the operation of one or more vehicle systems. The response system can modify the control of two or more systems simultaneously in response to driver behavior.
Abstract:
Disclosed herein are an autonomous emergency braking system and a method of controlling the same. The autonomous emergency braking system includes a vehicle speed detector, a pedestrian position detector, a pedestrian information storage portion and an electronic control unit which, when the position of the pedestrian detected by the pedestrian position detector is located in a warning area or a braking area in front of the vehicle, receives the vehicle speed and information of the position of the pedestrian detected by the pedestrian position detector, calculates a time to collision (TTC), predicts a relative position of the pedestrian compared with the vehicle at a point in time after the calculated TTC passes by tracking a moving trajectory of the pedestrian from a time series change in the position of the pedestrian stored in the pedestrian information storage portion, and performs autonomous emergency braking control depending on the predicted relative position of the pedestrian.
Abstract:
A method for operating a brake system of a vehicle which includes a master brake cylinder which can be activated by the driver by a brake pedal, at least one driver-independent pressure source, at least one wheel brake to which a wheel speed sensor is assigned, and a brake activation sensor, wherein it is checked whether a hazardous situation is present, and in the case of a hazardous situation being detected the at least one driver-independent pressure source is activated. A hazardous situation is detected when the change in a measured deceleration over time or the absolute value of a measured deceleration exceeds a predefined hazard threshold value and a brake activation operation is detected. In addition, the invention relates to a brake system for a motor vehicle having brake assistance in hazardous situations which does not require a master brake cylinder pressure sensor.
Abstract:
Methods of assessing driver behavior include monitoring vehicle systems and driver monitoring systems to accommodate for a driver's slow reaction time, attention lapse and/or alertness. When it is determined that a driver is drowsy, for example, the response system may modify the operation of one or more vehicle systems. The systems that may be modified include: visual devices, audio devices, tactile devices, antilock brake systems, automatic brake prefill systems, brake assist systems, auto cruise control systems, electronic stability control systems, collision warning systems, lane keep assist systems, blind spot indicator systems, electronic pretensioning systems and climate control systems.
Abstract:
A braking system for a vehicle and a trailer being towed by the vehicle includes an electronic trailer brake constructed and arranged to control trailer wheel brakes of the trailer, and an electronic brake system (EBS) constructed and arranged to control wheel brakes of the vehicle. The EBS includes at least one circuit constructed and arranged to detect a function of the EBS and, in response to the detected function, to send a request signal to the electronic trailer brake instructing the electronic trailer brake to activate the trailer wheel brakes.
Abstract:
A method for automatically decelerating a vehicle having a first side with a first front wheel brake and a first rear wheel brake and second side with a second front wheel brake and a second rear wheel brake, and in which the vehicle further has a braking system with a pump operable to deliver a flow of pressurized hydraulic fluid to the first and second front wheel brakes and to the first and second rear wheel brakes, includes receiving a signal associated with an emergency braking event. The method further includes increasing the hydraulic pressure at the first and second front wheel brakes at a greater rate than at the first and second rear wheel brakes. The method also includes directing hydraulic fluid from the first front wheel brake to the second rear wheel brake upon achieving a targeted level of deceleration or wheel slip.
Abstract:
An accelerator pedal operated braking system for an automatic transmission vehicle; said braking system including monitoring of angular data and angular rate of change data of an accelerator pedal of said vehicle; said system further including a control module and an actuator acting on the brake pedal of said vehicle; said braking system responsive to said angular data and angular rate of change data.
Abstract:
A vehicle brake system includes a cylinder, a master piston including a pressure applying piston and a projection portion, a servo chamber, a contact/separation determining means determining a separated state and a contact state between the input piston and the master piston, a pilot pressure generating device generating a pilot pressure, a servo pressure generating device, a servo pressure measuring device measuring a servo pressure, and a master pressure estimating means estimating a master pressure from the pilot pressure and a first servo ratio, which is a cross-sectional area ratio between a first pilot chamber and a servo pressure generating chamber, in a case of the separated state, and estimating the master pressure based on the servo pressure, the pilot pressure and a second servo ratio, which is a cross-sectional area ratio between a second pilot chamber and the servo pressure generating chamber, in a case of the contact state.
Abstract:
A method for ensuring a braking effect utilizes a service brake system and a parking brake system of a vehicle. The service brake system is configured to be actuated irrespective of a driver input, and the parking brake system is activated by an extraneous force, for example in an electromechanical arrangement. When a deceleration request is received, the service brake system is initially actuated. If a deceleration variable remains below a target value and the measured slip is smaller than a slip threshold value, the parking brake system is actuated in order to bring the vehicle to a standstill.