摘要:
Certain aspects of the present disclosure are directed to a method that includes: depositing, in a deposition environment, an amorphous semiconductor material on a substrate to form a semiconductor film on the substrate; filling, in the depositing process, the deposition environment with a first precursor material such that the semiconductor film formed on the substrate includes a first layer having a first material characteristic; filling, in the depositing process, the deposition environment with a crystallization-stop precursor material such that the silicon film includes a crystallization-stop layer having a crystallization characteristic different from a crystallization characteristic of the first layer; depositing a metal film on the semiconductor film; and annealing the semiconductor film and the metal film at an predetermined annealing temperature for a predetermined period of time such that the first layer is at least partially crystallized and the crystallization-stop layer is at least partially amorphous.
摘要:
The present invention relates to a method for manufacturing silicon thin-film solar cells, including: providing a substrate; forming a first electrode on the substrate; forming a first doped semiconductor layer on the first electrode by chemical vapor deposition; forming an intrinsic layer on the first doped semiconductor layer by chemical vapor deposition, where the intrinsic layer includes a plurality of amorphous/nanocrystalline silicon layers, and the intrinsic layer has various energy bandgaps formed by varying average grain sizes of the amorphous/nanocrystalline silicon layers; forming a second doped semiconductor layer on the intrinsic layer by chemical vapor deposition, where one of the first doped semiconductor layer and the second doped semiconductor layer is a p-type amorphous silicon layer and the other is an n-type amorphous/nano-microcrystalline silicon layer; and forming a second electrode on the second doped semiconductor layer. Accordingly, the present invention can achieve broadband absorption in a single junction structure.
摘要:
A photovoltaic device including a substrate; a first electrode placed on the substrate; a second electrode which is placed opposite to the first electrode and which light is incident on; a first unit cell being placed between the first electrode and the second electrode, and including an intrinsic semiconductor layer including crystalline silicon grains making the surface of the intrinsic semiconductor layer toward the second electrode textured; and a second unit cell placed between the first unit cell and the second electrode.
摘要:
A photovoltaic device comprises a microcrystalline silicon layer, wherein the microcrystalline silicon layer, when a maximum value of a crystallinity Xc along a film thickness direction is scaled to 1, shows increasing tendency of the crystallinity Xc along the film thickness direction, and has a high-nitrogen-concentration region (region a) of higher nitrogen concentration than other regions in the microcrystalline silicon layer in a range of the film thickness direction where the crystallinity Xc is 0.75 or more.
摘要:
In a thin-film photovoltaic cell, a first electrode layer, a semiconductor layer, and a third electrode layer are formed on a main surface of an insulating substrate. A second electrode layer and a fourth electrode layer are formed on another surface of the substrate. In a main surface side processed portion, the first electrode layer, semiconductor layer, and third electrode layer are removed, and in another surface side processed portion, the second electrode layer and fourth electrode layer are removed. Acceleration and deceleration regions for forming a crooked structure of the other surface side processed portion, or intersection portions of processing lines configuring the crooked structure, are disposed in locally electrically isolated regions in the first electrode layer before the formation of the semiconductor layer.
摘要:
A vertical multi-junction photovoltaic device includes a structured substrate including a plurality of substantially vertical elongated structures protruding from a planar surface of the structured substrate. An areal density of the elongated structures at a first sliced plane parallel to the planer surface is different than an areal density of the elongated structures at a second sliced plane parallel to the planar surface. The device further includes least a first sub-cell and a second sub-cell, each having a corresponding vertical p-n or p-i-n junction formed of conformal layers, the first sub-cell being formed in a first region incorporating the first sliced plane and the second sub-cell being formed above the first sub-cell in a second region incorporating the second sliced plane.
摘要:
The present invention relates to a silicon multilayer anti-reflective film with a gradually varying refractive index and a manufacturing method therefor, and a solar cell having the same and a manufacturing method therefor, wherein: the refractive index of a silicon thin film is adjusted by depositing silicon on a semiconductor or glass substrate with a slight tilt; and an anti-reflective film with a gradually varying refractive index is implemented using a silicon multi-layer film in which multi-layer film are stacked with different tilt angles. In addition, the silicon multilayer anti-reflective film according to the present invention is applied to a silicon solar cell, thereby suppressing reflection in the inside of the solar cell and providing an excellent heat radiation characteristic using a high heat transfer coefficient.
摘要:
A method for manufacturing a microcrystalline semiconductor film having high crystallinity is provided. A method for manufacturing a semiconductor device which has favorable electric characteristics with high productivity is provided. After a first microcrystalline semiconductor film is formed over a substrate, treatment for flattening a surface of the first microcrystalline semiconductor film is performed. Then, treatment for removing an amorphous semiconductor region on a surface side of the flattened first microcrystalline semiconductor film is performed so that a second microcrystalline semiconductor film having high crystallinity and flatness is formed. After that, a third microcrystalline semiconductor film is formed over the second microcrystalline semiconductor film.
摘要:
The purpose is manufacturing a photoelectric conversion device with excellent photoelectric conversion characteristics typified by a solar cell with effective use of a silicon material. A single crystal silicon layer is irradiated with a laser beam through an optical modulator to form an uneven structure on a surface thereof. The single crystal silicon layer is obtained in the following manner; an embrittlement layer is formed in a single crystal silicon substrate; one surface of a supporting substrate and one surface of an insulating layer formed over the single crystal silicon substrate are disposed to be in contact and bonded; heat treatment is performed; and the single crystal silicon layer is formed over the supporting substrate by separating part of the single crystal silicon substrate fixed to the supporting substrate along the embrittlement layer or a periphery of the embrittlement layer. Then, irradiation with a laser beam is performed on a separation surface of the single crystal silicon layer through an optical modulator which modulates light intensity regularly, and unevenness is formed on the surface. Due to the unevenness, reflection of incident light is reduced and absorptance with respect to light is improved, therefore, photoelectric conversion efficiency of the photoelectric conversion device is improved.
摘要:
In one example, a method for fabricating a solar cell comprising a first electrode, a first-type layer, an intrinsic layer, a second-type layer and a second electrode is disclosed. The method comprising forming a second-type layer including an amorphous silicon (Si) carbide thin film by an inductively coupled plasma chemical vapor deposition (ICP-CVD) device using mixed gas including hydrogen (H2) gas, silane (SiH4) gas, diborane (B2H6) and ethylene (C2H4) gas, wherein the ethylene (C2H4) gas includes 60% hydrogen gas diluted ethylene gas, the diborane gas is 97% hydrogen gas diluted diborane gas, the mixed gas includes 1 to 1.2% ethylene gas and 6 to 6.5% diborane gas.