摘要:
An interlevel dielectric structure includes first and second dielectric layers between which are located lines of a conductive material with a dielectric material in spaces between the lines of conductive material, with the lower surface of the dielectric material extending lower than the lower surface of lines of conductive material adjacent thereto, and the upper surface of the dielectric material extending higher than the upper surface of conductive material adjacent thereto, thus reducing fringe and total capacitance between the lines of conductive material. The dielectric material, which has a dielectric constant of less than about 3.6, does not extend directly above the upper surface of the lines of conductive material, allowing formation of subsequent contacts down to the lines of conductive material without exposing the dielectric material to further processing. Various methods for forming the interlevel dielectric structure are disclosed.
摘要:
A capacitor for a memory device is formed with a conductive oxide for a bottom electrode. The conductive oxide (RuOx) is deposited under low temperatures as an amorphous film. As a result, the film is conformally deposited over a three dimensional, folding structure. Furthermore, a subsequent polishing step is easily performed on the amorphous film, increasing wafer throughput. After deposition and polishing, the film is crystallized in a non-oxidizing ambient.
摘要翻译:用于存储器件的电容器形成有用于底部电极的导电氧化物。 导电氧化物(RuO x S)在低温下作为非晶膜沉积。 结果,膜被共形沉积在三维折叠结构上。 此外,随后的研磨步骤容易地在非晶膜上进行,提高了晶片生产量。 沉积和抛光后,膜在非氧化环境中结晶。
摘要:
A method of forming a thin film transistor relative to a substrate includes, a) providing a thin film transistor layer of polycrystalline material on a substrate, the polycrystalline material comprising grain boundaries; b) providing a fluorine containing layer adjacent the polycrystalline thin film layer; c) annealing the fluorine containing layer at a temperature and for a time period which in combination are effective to drive fluorine from the fluorine containing layer into the polycrystalline thin film layer and incorporate fluorine within the grain boundaries to passivate said grain boundaries; and d) providing a transistor gate operatively adjacent the thin film transistor layer. The thin film transistor can be fabricated to be bottom gated or top gated. A buffering layer can be provided intermediate the thin film transistor layer and the fluorine containing layer, with the buffering layer being transmissive of fluorine from the fluorine containing layer during the annealing. Preferably, the annealing temperature is both sufficiently high to drive fluorine from the fluorine containing layer into the polycrystalline thin film layer and incorporate fluorine within the grain boundaries to passivate said grain boundaries, but sufficiently low to prevent chemical reaction of the fluorine containing layer with the polycrystalline thin film layer.
摘要:
A semiconductor device has a diffusion barrier formed between a doped glass layer and surface structures formed on a substrate. The diffusion barrier includes alumina and optionally a nitride, and has a layer thickness satisfying the high aspect ratio of the gaps between the surface structures, while adequately preventing dopants in doped glass layer from diffusing out of the doped glass layer to the surface structures and the substrate. Further, heavy water can be used during the formation of the alumina so that deuterium may be accomplished near the interface of surface structures and the substrate to enhance the performance of the device.
摘要:
A deposition method includes positioning a substrate within a deposition chamber defined at least in part by chamber walls. At least one of the chamber walls comprises a chamber surface having a plurality of purge gas inlets to the chamber therein. A process gas is provided over the substrate effective to deposit a layer onto the substrate. During such providing, a material adheres to the chamber surface. Reactive purge gas is emitted to the deposition chamber from the purge gas inlets effective to form a reactive gas curtain over the chamber surface and away from the substrate, with such reactive gas reacting with such adhering material. Further implementations are contemplated.
摘要:
The invention includes chemical vapor deposition methods, including atomic layer deposition, and valve assemblies for use with a reactive precursor in semiconductor processing. In one implementation, a chemical vapor deposition method includes positioning a semiconductor substrate within a chemical vapor deposition chamber. A first deposition precursor is fed to a remote plasma generation chamber positioned upstream of the deposition chamber, and a plasma is generated therefrom within the remote chamber and effective to form a first active deposition precursor species. The first species is flowed to the deposition chamber. During the flowing, flow of at least some of the first species is diverted from entering the deposition chamber while feeding and maintaining plasma generation of the first deposition precursor within the remote chamber. At some point, diverting is ceased while feeding and maintaining plasma generation of the first deposition precursor within the remote chamber. Other aspects and implementations are contemplated.
摘要:
Reactors having gas distributors for depositing materials onto micro-device workpieces, systems that include such reactors, and methods for depositing materials onto micro-device workpieces are disclosed herein. In one embodiment, a reactor for depositing material on a micro-device workpiece includes a reaction chamber and a gas distributor in the reaction chamber. The gas distributor includes a first gas conduit having a first injector and a second gas conduit having a second injector. The first injector projects a first gas flow along a first vector and the second injector projects a second gas flow along a second vector that intersects the first vector in an external mixing zone facing the workpiece. In another embodiment, the mixing zone is an external mixing recess on a surface of the gas distributor that faces the workpiece.
摘要:
A method of forming a crystalline phase material includes, a) providing a stress inducing material within or operatively adjacent a crystalline material of a first crystalline phase; and b) annealing the crystalline material of the first crystalline phase under conditions effective to transform it to a second crystalline phase. The stress inducing material preferably induces compressive stress within the first crystalline phase during the anneal to the second crystalline phase to lower the required activation energy to produce a more dense second crystalline phase. Example compressive stress inducing layers include SiO2 and Si3N4, while example stress inducing materials for providing into layers are Ge, W and Co. Where the compressive stress inducing material is provided on the same side of a wafer over which the crystalline phase material is provided, it is provided to have a thermal coefficient of expansion which is less than the first phase crystalline material. Where the compressive stress inducing material is provided on the opposite side of a wafer over which the crystalline phase material is provided, it is provided to have a thermal coefficient of expansion which is greater than the first phase crystalline material. Example and preferred crystalline phase materials having two phases are refractory metal silicides, such as TiSix.
摘要翻译:形成结晶相材料的方法包括:a)在第一结晶相的结晶材料内部或在其中邻近的第一结晶相中提供应力诱导材料; 和b)在有效地将其转变成第二结晶相的条件下退火第一结晶相的结晶材料。 应力诱导材料优选在与第二结晶相退火期间在第一结晶相内诱导压应力,以降低所需的活化能以产生更致密的第二结晶相。 示例性压缩应力诱导层包括SiO 2和Si 3 N 4,而用于提供层的应力诱导材料是Ge,W和Co 在压应力诱导材料设置在其上提供结晶相材料的晶片的相同侧上时,其被设置为具有小于第一相结晶材料的热膨胀系数。 在压应力诱导材料设置在提供结晶相材料的晶片的相对侧上的情况下,其被设置为具有大于第一相结晶材料的热膨胀系数。 具有两相的实例和优选结晶相材料是难熔金属硅化物,例如TiSi x x。
摘要:
A method of forming isolation regions in a silicon substrate comprising the steps of forming a trench in the silicon substrate, filling the trench with a silanol polymer material then heating the silanol polymer material so that silicon dioxide is formed in the trench and thereby forms the isolation region. In the preferred embodiment, the silicon substrate is covered by a masking stack which is then etched to expose the underlying silicon substrate. The silicon substrate is then etched to form the trench and the silanol polymer material is deposited in the trench and fills the trench from the bottom up thereby avoiding divots and other defects. The silanol polymer grows faster on the silicon substrate than it does on the nitride. After the silanol polymer is reacted to form the silicon dioxide, CMP polishing is then used to remove the remaining masking stack and silicon dioxide above the surface of the silicon substrate.
摘要:
A capacitor for a memory device is formed with a conductive oxide for a bottom electrode. The conductive oxide (RuOx) is deposited under low temperatures as an amorphous film. As a result, the film is conformally deposited over a three dimensional, folding structure. Furthermore, a subsequent polishing step is easily performed on the amorphous film, increasing wafer throughput. After deposition and polishing, the film is crystallized in a non-oxidizing ambient.