Abstract:
A microelectronic package may be formed with a picture frame stiffener surrounding a microelectronic die for reducing warpage of the microelectronic package. An embodiment for fabricating such a microelectronic package may include forming a microelectronic die having an active surface and an opposing back surface, wherein the microelectronic die active surface may be attached to a microelectronic substrate. A picture frame stiffener having an opening therethrough may be formed and placed on a release film, wherein a mold material may be deposited over the picture frame stiffener and the release film. The microelectronic die may be inserted into the mold material, wherein at least a portion of the microelectronic die extends into the picture frame opening. The release film may be removed and a portion of the mold material extending over the microelectronic die back surface may then be removed to form the microelectronic package.
Abstract:
A microelectronic structure includes a substrate having a first surface and a cavity extending into the substrate from the substrate first surface, a first microelectronic device and a second microelectronic device attached to the substrate first surface, and a bridge disposed within the substrate cavity and attached to the first microelectronic device and to the second microelectronic device. The bridge includes a plurality conductive vias extending from a first surface to an opposing second surface of the bridge, wherein the conductive vias are electrically coupled to deliver electrical signals from the substrate to the first microelectronic device and the second microelectronic device. The bridge further creates at least one electrical signal connection between the first microelectronic device and the second microelectronic device.
Abstract:
A microelectronic package may be formed with a picture frame stiffener surrounding a microelectronic die for reducing warpage of the microelectronic package. An embodiment for fabricating such a microelectronic package may include forming a microelectronic die having an active surface and an opposing back surface, wherein the microelectronic die active surface may be attached to a microelectronic substrate. A picture frame stiffener having an opening therethrough may be formed and placed on a release film, wherein a mold material may be deposited over the picture frame stiffener and the release film. The microelectronic die may be inserted into the mold material, wherein at least a portion of the microelectronic die extends into the picture frame opening. The release film may be removed and a portion of the mold material extending over the microelectronic die back surface may then be removed to form the microelectronic package.
Abstract:
Microelectronic assemblies, related devices and methods, are disclosed herein. In some embodiments, a microelectronic assembly may include a first die, having a first surface and an opposing second surface, in a first layer; a redistribution layer (RDL) on the first layer, wherein the RDL includes conductive vias having a greater width towards a first surface of the RDL and a smaller width towards an opposing second surface of the RDL; wherein the first surface of the RDL is electrically coupled to the second surface of the first die by first solder interconnects having a first solder; and a second die in a second layer on the RDL, wherein the second die is electrically coupled to the RDL by second solder interconnects having a second solder, wherein the second solder is different than the first solder.
Abstract:
Input/output (I/O) routing from one integrated circuit die to other integrated circuit dies in an integrated circuit component comprising heterogeneous and vertically stacked die is made from the top and bottom surfaces of the integrated circuit die to the other dies. Die-to-die I/O routing from the die to laterally adjacent die is made from the top surface of the die via one or more redistribution layers. Die-to-die routing from the die to vertically adjacent die is made via hybrid bonding on the bottom surface of the die. Embedded bridges or chiplets or not used for die-to-die I/O routing, which can free up space for more through-dielectric vias to provide power and ground connections to the die, which can provide for improved power delivery.
Abstract:
Hybrid bonding interconnect (HBI) architectures for scalability. Embodiments implement a bonding layer on a semiconductor die that includes a thick oxide layer overlaid with a thin layer of a hermetic material including silicon and at least one of carbon and nitrogen. The conductive bonds of the semiconductor die are placed in the thick oxide layer and exposed at the surface of the hermetic material. Some embodiments implement a non-bonding moisture seal ring (MSR) structure.
Abstract:
An apparatus comprising a first integrated circuit device, the first integrated circuit device comprising a first layer with an area comprising metallization and metal-free slits; and a fiducial in a second layer above the first layer, the fiducial formed over the area comprising the metallization and metal-free slits.
Abstract:
In one embodiment, an integrated circuit package includes a first (top) package substrate, a photonics integrated circuit (PIC) die coupled to the first package substrate, and a second package substrate coupled to a bottom side of the first package substrate. The package further includes a pedestal coupled to a top side of the second package substrate in an area of the second package substrate that extends beyond an edge of the first package substrate at which the PIC die is located.
Abstract:
Embodiments of the invention include device packages and methods of forming such packages. In an embodiment, the method of forming a device package may comprise forming a reinforcement layer over a substrate. One or more openings may be formed through the reinforcement layer. In an embodiment, a device die may be placed into one of the openings. The device die may be bonded to the substrate by reflowing one or more solder bumps positioned between the device die and the substrate. Embodiments of the invention may include a molded reinforcement layer. Alternative embodiments include a reinforcement layer that is adhered to the surface of the substrate with an adhesive layer.
Abstract:
An architecture for v-groove fiber attach for a photonic integrated circuit (PIC). The architecture is characterized by a PIC with a thickness of less than 100 microns. A carrier layer is attached to the non-active surface of the PIC and v-grooves are etched into the active surface of the PIC wafer. The carrier layer functions as an etch stop during the etching of the v-grooves, thereby becoming a floor for the v-grooves and enabling the v-grooves to extend to a depth equal to the thickness of the PIC. The carrier layer can be a glass layer. The carrier layer can also be an electronic integrated circuit (EIC).