摘要:
A device is disclosed herein which may comprise a droplet generator producing droplets of target material; a sensor providing an intercept time signal when a droplet reaches a preselected location; a delay circuit coupled with said sensor, the delay circuit generating a trigger signal delayed from the intercept time signal; a laser source responsive to a trigger signal to produce a laser pulse; and a system controlling said delay circuit to provide a trigger signal delayed from the intercept time by a first delay time to generate a light pulse that is focused on a droplet and a trigger signal delayed from the intercept time by a second delay time to generate a light pulse which is not focused on a droplet.
摘要:
A high energy photon source. A pair of plasma pinch electrodes are located in a vacuum chamber. The chamber contains a working gas which includes a noble buffer gas and an active gas chosen to provide a desired spectral line. A pulse power source provides electrical pulses at repetition rates of 1000 Hz or greater and at voltages high enough to create electrical discharges between the electrodes to produce very high temperature, high density plasma pinches in the working gas providing radiation at the spectral line of the source or active gas. A fourth generation unit is described which produces 20 mJ, 13.5 nm pulses into 2 &pgr; steradians at repetition rates of 2000 Hz with xenon as the active gas. This unit includes a pulse power system having a resonant charger charging a charging capacitor bank, and a magnetic compression circuit comprising a pulse transformer for generating the high voltage electrical pulses at repetition rates of 2000 Hz or greater.
摘要:
An electric discharge laser with fast wavelength correction. Fast wavelength correction equipment includes at least one piezoelectric drive and a fast wavelength measurement system and fast feedback response times. In a preferred embodiment, equipment is provided to control wavelength on a slow time frame of several milliseconds, on a intermediate time from of about one to five milliseconds and on a very fast time frame of a few microseconds. Preferred techniques include a combination of a relatively slow stepper motor and a very fast piezoelectric driver for tuning the laser wavelength using a tuning mirror. A preferred control technique is described (utilizing a very fast wavelength monitor) to provide the slow and intermediate wavelength control with the combination of a stepper motor and a piezoelectric driver. Very fast wavelength control is provided with a piezoelectric load cell in combination with the piezoelectric driver. Preferred embodiments provide (1) fast feedback control based on wavelength measurements, (2) fast vibration control, (3) active damping using the load cell and an active damping module, (4) transient inversion using feed forward algorithms based on historical burst data. A preferred embodiment adapts the feed forward algorithms to current conditions. Another preferred embodiment measures tuning mirror position to permit wavelength pretuning and active wavelength tuning.
摘要:
A gas discharge laser having a laser chamber with two elongated erodable electrode elements, each having an erodable section and an electrode with support configured to minimize discharge region laser gas turbulence and with the electrode elements being configured to permit gradual erosion over more than 8 billion pulses without causing substantial changes in the shape of electrical discharges between the electrode elements. A pulse power system provides electrical pulses of at least 2J at rates of at least 2 KHz. A blower circulates laser gas between the electrodes at speeds of at least 2 m/s and a heat exchanger is provided to remove heat produced by the blower and the discharges.
摘要:
A device is disclosed which may comprise a system generating a plasma at a plasma site, the plasma producing EUV radiation and ions exiting the plasma. The device may also include an optic, e.g., a multi-layer mirror, distanced from the site by a distance, d, and a flowing gas disposed between the plasma and optic, the gas establishing a gas pressure sufficient to operate over the distance, d, to reduce ion energy below a pre-selected value before the ions reach the optic. In one embodiment, the gas may comprise hydrogen and in a particular embodiment, the gas may comprise greater than 50 percent hydrogen by volume.
摘要:
A device is described herein which may comprise an oscillator having an oscillator cavity length, L0, and defining an oscillator path; and a multi-pass optical amplifier coupled with the oscillator to establish a combined optical cavity including the oscillator path, the combined cavity having a length, Lcombined, where Lcombined=(N+x)*L0, where “N” is an integer and “x” is a number between 0.4 and 0.6.
摘要:
Systems and methods are disclosed for reducing the influence of plasma generated debris on internal components of an EUV light source. In one aspect, an EUV metrology monitor is provided which may have a heater to heat an internal multi-layer filtering mirror to a temperature sufficient to remove deposited debris from the mirror. In another aspect, a device is disclosed for removing plasma generated debris from an EUV light source collector mirror having a different debris deposition rate at different zones on the collector mirror. In a particular aspect, an EUV collector mirror system may comprise a source of hydrogen to combine with Li debris to create LiH on a collector surface; and a sputtering system to sputter LiH from the collector surface. In another aspect, an apparatus for etching debris from a surface of a EUV light source collector mirror with a controlled plasma etch rate is disclosed.
摘要:
An LPP EUV light source is disclosed having an optic positioned in the plasma chamber for reflecting EUV light generated therein and a laser input window. For this aspect, the EUV light source may be configured to expose the optic to a gaseous etchant pressure for optic cleaning while the window is exposed to a lower gaseous etchant pressure to avoid window coating deterioration. In another aspect, an EUV light source may comprise a target material positionable along a beam path to participate in a first interaction with light on the beam path; an optical amplifier; and at least one optic directing photons scattered from the first interaction into the optical amplifier to produce a laser beam on the beam path for a subsequent interaction with the target material to produce an EUV light emitting plasma.
摘要:
A reflective EUV optic such as a collector mirror configured as an array of facets that are spaced apart to form respective gaps between adjacent facets. The gaps are used as inlets for gas flow across one of the facets such that flow is introduced parallel to the optic surface. The facets can be made with offsets such that loss of reflective area of the EUV optic can be minimized. The gas facilitates removal of target material from the surface of the facets.
摘要:
Devices and corresponding methods of use are described herein that may include an enclosing structure defining a closed loop flow path and a system generating a plasma at a plasma site, e.g. laser produced plasma system, where the plasma site may be in fluid communication with the flow path. For the device, a gas may be disposed in the enclosing structure which may include an ion-stopping buffer gas and/or an etchant. A pump may be provided to force the gas through the closed loop flow path. One or more heat exchangers removing heat from gas flowing in the flow path may be provided. In some arrangements, a filter may be used to remove at least a portion of a target species from gas flowing in the flow path.