Abstract:
Systems and methods are disclosed relating to composite photonic materials used to design structures and detecting material deformation for the purpose of monitoring structural health of physical structures. According to one aspect, a composite structure is provided that includes a base material, an optical diffraction grating and one or more fluorophore materials constructed such that localized perturbations create a measureable change in the structure's diffraction pattern. An inspection device is also provided that is configured to detect perturbations in the composite structure. The inspection device is configured to emit an inspecting radiation into the structure and capture the refracted radiation and measure the change in the diffraction pattern and quantify the perturbation based on the wavelength and the angular information for the diffracted radiation.
Abstract:
A scanning luminescence light microscope for spatial high resolution imaging a structure marked with a luminescent marker comprises a light source for luminescence inhibition light and for further light; a light shaping and aligning device; and a detector registering luminescence light emitted by the luminescent marker. The device, by means of two optical gratings and an objective lens, forms two crossing line gratings of the luminescence inhibition light, and two crossing line gratings of the further light so that local intensity minima of an overall intensity distribution of the luminescence inhibition light are delimited in at least two directions, and that local intensity maxima or local intensity minima of an overall intensity distribution of the further light coincide with the local intensity minima of the luminescence inhibition light. Further, the device moves the overall intensity distributions of the further light and the luminescence inhibition light to scan the structure.
Abstract:
In an inspection apparatus, a target on the surface is illuminated with illuminating radiation that comprises first and second illuminating components. The illuminating components form one or more periodic illuminating patterns on the surface. A plurality of scattered radiation patterns formed by the illuminating radiation after scattering by the target is captured at a detector for a number of values of a controllable characteristic of at least one of the illuminating components. The captured radiation is then used to reconstruct data describing the target.
Abstract:
A system for acquiring surface data from one of the surfaces of a curved panel having a specular surface and developing a surface definition of the panel includes a conveyor for conveying the panel in a first direction, at least one display projecting a preselected multi-phase non-repeating contrasting pattern, and at least one camera, each one of the cameras uniquely paired with one of the displays. The system may also include a control programmed to execute logic for controlling each of the camera/display pairs to acquire the desired images, and logic for analyzing and combining the data acquired by the cameras to construct a definition of the surface of the panel.
Abstract:
An optical instrument monitors PCR replication of DNA in a reaction apparatus having a temperature cycled block with vials of reaction ingredients including dye that fluoresces in presence of double-stranded DNA. A beam splitter passes an excitation beam to the vials to fluoresce the dye. An emission beam from the dye is passed by the beam splitter to a CCD detector from which a processor computes DNA concentration. A reference strip with a plurality of reference emitters emit reference beams of different intensity, from which the processor selects an optimum emitter for compensating for drift. Exposure time is automatically adjusted for keeping within optimum dynamic ranges of the CCD and processor. A module of the beam splitter and associated optical filters is associated with selected dye, and is replaceable for different dyes.
Abstract:
Provided herein is an apparatus, including an optical characterization device; a photon detector array configured to sequentially receive a first set of photons scattered from surface features of an article and a second set of photons scattered from surface features of the article and subsequently processed by the optical characterization device; and a chemical characterization means for chemically characterizing the surface features of the article, wherein the chemical characterization means is configured for processing the first set of photons received by the photon detector array and the second set of photons received by the photon detector array.
Abstract:
A specimen measuring device includes: a light source device that irradiates a specimen surface of a specimen with illumination light from multiple illumination units at a plurality of illumination angles; a spectral camera device that is arranged above the specimen surface, spectrally separates reflected light from the specimen surface, and acquires 2D spectral information through a single image capturing operation; and a calculating unit that calculates deflection angle spectral information of the specimen surface used to measure a measurement value of a certain evaluation item of the specimen using a change in an optical geometrical condition of an illumination direction and an image capturing direction between pixels in an X axis direction and a Y axis direction of the spectral information.
Abstract:
A freshness estimation method includes obtaining an absorbance spectrum that is obtained by irradiating an eye of a fish with light having all or part of a wavelength band from 315 nm to 450 nm; and estimating freshness of the fish by using a shape of the obtained absorbance spectrum.
Abstract:
Techniques, systems, and devices are disclosed to provide on-chip integrated gas sensor based on photonic sensing. For example, a sensing device is provided to include an optical comb generator that produces an optical comb of different optical comb frequencies in a mid-infrared (MIR) spectral range to interact with a sample under detection, the optical comb generator including a substrate, an optical resonator formed on the substrate and an optical waveguide formed on the substrate and coupled to the optical resonator, and an optical detector that detects light from the sample at the different optical comb frequencies.
Abstract:
An optical instrument monitors PCR replication of DNA in a reaction apparatus having a temperature cycled block with vials of reaction ingredients including dye that fluoresces in presence of double-stranded DNA. A beam splitter passes an excitation beam to the vials to fluoresce the dye. An emission beam from the dye is passed by the beam splitter to a CCD detector from which a processor computes DNA concentration. A reference strip with a plurality of reference emitters emit reference beams of different intensity, from which the processor selects an optimum emitter for compensating for drift. Exposure time is automatically adjusted for keeping within optimum dynamic ranges of the CCD and processor. A module of the beam splitter and associated optical filters is associated with selected dye, and is replaceable for different dyes.