摘要:
Various embodiments include methods of forming interconnect structures, and the structures formed by such methods. In one embodiment, an interconnect structure can include: a photosensitive polyimide (PSPI) layer including a pedestal portion; a controlled collapse chip connection (C4) bump overlying the pedestal portion of the PSPI layer; a solder overlying the C4 bump and contacting a side of the C4 bump; and an underfill layer abutting the pedestal portion of the PSPI and the C4 bump, wherein the underfill layer and the solder form a first interface separated from the PSPI pedestal.
摘要:
Scaled transistors with reduced parasitic capacitance are formed by replacing a high-k dielectric sidewall spacer with a SiO2 or low-k dielectric sidewall spacer. Embodiments include transistors comprising a trench silicide layer spaced apart from a replacement metal gate electrode, and a layer of SiO2 or low-k material on a side surface of the replacement metal gate electrode facing the trench silicide layer. Implementing methodologies may include forming an intermediate structure comprising a removable gate with nitride spacers, removing the removable gate, forming a layer of high-k material on the nitride spacers, forming a layer of metal nitride on the high-k material, filling the opening with insulating material and then removing a portion thereof to form a recess, removing the metal nitride layers and layers of high-k material, depositing a layer of SiO2 or low-k material, and forming a replacement metal gate in the remaining recess.
摘要:
When forming sophisticated P-channel transistors, the metal silicide agglomeration in a germanium-containing strain-inducing semiconductor alloy may be avoided or at least significantly reduced by incorporating a carbon and/or nitrogen species in a highly controllable manner. In some illustrative embodiments, the carbon species or nitrogen species is incorporated during the epitaxial growth process so as to form a surface layer of the strain-inducing semiconductor alloy with a desired nitrogen and/or carbon concentration and with a desired thickness without unduly affecting any other device areas.
摘要:
Semiconductor devices with n-shaped bottom stress liners are formed. Embodiments include forming a protuberance on a substrate, conformally forming a sacrificial material layer over the protuberance, forming a gate stack above the sacrificial material layer on a silicon layer, removing the sacrificial material layer to form a tunnel, and forming a stress liner in the tunnel conforming to the shape of the protuberance. Embodiments further include forming a silicon layer over the sacrificial material layer and lining the tunnel with a passivation layer prior to forming the stress liner.
摘要:
Scaled transistors with reduced parasitic capacitance are formed by replacing a high-k dielectric sidewall spacer with a SiO2 or low-k dielectric sidewall spacer. Embodiments include transistors comprising a trench silicide layer spaced apart from a replacement metal gate electrode, and a layer of SiO2 or low-k material on a side surface of the replacement metal gate electrode facing the trench silicide layer. Implementing methodologies may include forming an intermediate structure comprising a removable gate with nitride spacers, removing the removable gate, forming a layer of high-k material on the nitride spacers, forming a layer of metal nitride on the high-k material, filling the opening with insulating material and then removing a portion thereof to form a recess, removing the metal nitride layers and layers of high-k material, depositing a layer of SiO2 or low-k material, and forming a replacement metal gate in the remaining recess.
摘要:
In sophisticated semiconductor devices, manufacturing techniques and etch masks may be formed on the basis of a mask layer stack which comprises an additional mask layer, which may receive an opening on the basis of lithography techniques. Thereafter, the width of the mask opening may be reduced by applying a selective deposition or growth process, which thus results in a highly uniform and well-controllable adjustment of the target width of the etch mask prior to performing the actual patterning process, for instance for forming sophisticated contact openings, via openings and the like.
摘要:
A dielectric metal compound liner can be deposited on a semiconductor fin prior to formation of a disposable gate structure. The dielectric metal compound liner protects the semiconductor fin during the pattering of the disposable gate structure and a gate spacer. The dielectric metal compound liner can be removed prior to formation of source and drain regions and a replacement gate structure. Alternately, a dielectric metal compound liner can be deposited on a semiconductor fin and a gate stack, and can be removed after formation of a gate spacer. Further, a dielectric metal compound liner can be deposited on a semiconductor fin and a disposable gate structure, and can be removed after formation of a gate spacer and removal of the disposable gate structure. The dielectric metal compound liner can protect the semiconductor fin during formation of the gate spacer in each embodiment.
摘要:
In sophisticated semiconductor devices, a shallow drain and source concentration profile may be obtained for active regions having a pronounced surface topography by performing tilted implantation steps upon incorporating the drain and source dopant species. In this manner, a metal silicide may be reliably embedded in the drain and source regions.
摘要:
Structures for a resistive random-access memory element and methods of forming a structure for a resistive random-access memory element. The structure comprises an interlayer dielectric layer including a first trench having a sidewall and a second trench having a sidewall adjacent to the sidewall of the first trench. The structure further comprises a first layer on the sidewall of the first trench, a second layer inside the second trench, and a third layer on the sidewall of the second trench. The first layer comprises a first metal, the second layer comprises a second metal, and the third layer comprises a dielectric material. The third layer includes a portion positioned between the first layer and the second layer.
摘要:
The present disclosure relates to semiconductor structures and, more particularly, to bipolar transistors and methods of manufacture. The structure includes: an emitter in a semiconductor substrate; a collector in the semiconductor substrate; a base contact region in the semiconductor substrate and adjacent to the collector and the emitter; and a shallow trench isolation structure overlapping the base contact region and separating the base contact region from the emitter and the collector.