摘要:
The present invention relates to coated fullerenes comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene and methods for making. The present invention further relates to composites comprising the coated fullerenes of the present invention and further comprising polymers, ceramics, and/or inorganic oxides. A coated fullerene interconnect device where at least two fullerenes are contacting each other to form a spontaneous interconnect is also disclosed as well as methods of making. In addition, dielectric films comprising the coated fullerenes of the present invention and methods of making are further disclosed.
摘要:
A nanoparticle coated with a semiconducting material and a method for making the same. In one embodiment, the method comprises making a semiconductor coated nanoparticle comprising a layer of at least one semiconducting material covering at least a portion of at least one surface of a nanoparticle, comprising: (A) dispersing the nanoparticle under suitable conditions to provide a dispersed nanoparticle; and (B) depositing at least one semiconducting material under suitable conditions onto at least one surface of the dispersed nanoparticle to produce the semiconductor coated nanoparticle. In other embodiments, the nanoparticle comprises a fullerene. Further embodiments include the semiconducting material comprising CdS or CdSe.
摘要:
A laser processing system can be utilized to produce high-performance interdigitated back contact (IBC) solar cells. The laser processing system can be utilized to ablate, transfer material, and/or laser-dope or laser fire contacts. Laser ablation can be utilized to remove and pattern openings in a passivated or emitter layer. Laser transferring may then be utilized to transfer dopant and/or contact materials to the patterned openings, thereby forming an interdigitated finger pattern. The laser processing system may also be utilized to plate a conductive material on top of the transferred dopant or contact materials.
摘要:
An interdigitated solar cell may provide a heterojunction or tunnel junction emitter and base contacts that comprise laser processed regions that electrically couple the base contact to a substrate. Methods for manufacturing such solar cells to provide interdigitated back contacts may utilize laser processing to form laser processed regions that are isolated from the emitter. Laser processing may include laser-doping, laser-firing, laser-transfer, laser-transfer doping, laser contacting, and/or gas immersion laser doping.
摘要:
Systems and methods for producing nanoscale textured low reflectivity surfaces may be utilized to fabricate solar cells. A substrate may be patterned with a resist prior to an etching process that produces a nanoscale texture on the surface of the substrate. Additionally, the substrate may be subjected to a dopant diffusion process. Prior to dopant diffusion, the substrate may be optionally subjected to liquid phase deposition to deposit a material that allows for patterned doping. The order of the nanoscale texture etching and dopant diffusion may be modified as desired to produce post-nano emitters or pre-nano emitters.
摘要:
A solar cell structure may provide a front surface that may include a front passivation layer and front anti-reflective layer. The solar cell structure may provide both contacts on a rear surface. In some cases, the rear surface may optionally provide passivation, doped, and/or transparent conductive oxide layers. The rear surface also provides a multilayer foil assembly (MFA). The MFA provides a first metal foil in electrical communication with doped regions of the rear surface of the substrate, such as base or emitter regions. The MFA may also provide a second metal foil that is spaced apart from the first metal foil by a dielectric layer. The first metal foil and/or the dielectric layer may include openings through the entirety of these layers, and these openings may be utilized to form laser fired contacts electrically coupled to the second metal foil, which is electrically isolated from the first metal foil. In some embodiments, it may be desirable for the second foil to provide openings as well, which can be utilized to form laser fired contacts for the first metal foil.
摘要:
A laser processing system can be utilized to produce high-performance interdigitated back contact (IBC) solar cells. The laser processing system can be utilized to ablate, transfer material, and/or laser-dope or laser fire contacts. Laser ablation can be utilized to remove and pattern openings in a passivated or emitter layer. Laser transferring may then be utilized to transfer dopant and/or contact materials to the patterned openings, thereby forming an interdigitated finger pattern. The laser processing system may also be utilized to plate a conductive material on top of the transferred dopant or contact materials.
摘要:
In some cases, it is desirable to perform doping when manufacturing a solar cell to improve efficiency. Dopant diffusion may include the steps of: (a) an initial temperature ramp, (b) dopant vapor flow, (c) drive-in, and (d) cool down. However, doping may result in excessive doping, such as in regions where the solar cell has been nanoscale textured to provide black silicon, thereby creating a dead zone with excessive recombination of charge carriers. In the systems and method discussed herein, dopant vapor flow and drive-in steps may be performed at two different temperature set points to minimize or eliminate the formation of dead zones. In some embodiments, the dopant vapor flow may be performed at a lower temperature set point than the drive-in.
摘要:
A deposition process for coating a substrate with films of a different thickness on front and rear surface of a substrate can be achieve in one growth. The thickness of the film deposition can be controlled by the separation between the substrates. Different separation distances between the substrates in the same chemical bath will result in different film thicknesses on the substrate. Substrates may be arranged to have different separation distances between front and back surfaces, a V-shaped arrangement, or placed next to a curtain with varying separation distances between a substrate and the curtain.