摘要:
A metal interconnect comprising cobalt and method of forming a metal interconnect comprising cobalt are described. In an embodiment, a metal interconnect comprising cobalt includes a dielectric layer disposed on a substrate, an opening formed in the dielectric layer such that the substrate is exposed. The embodiment further includes a seed layer disposed over the substrate and a fill material comprising cobalt formed within the opening and on a surface of the seed layer.
摘要:
Methods to form memory devices having a MIM capacitor with a recessed electrode are described. In one embodiment, a method of forming a MIM capacitor with a recessed electrode includes forming an excavated feature defined by a lower portion that forms a bottom and an upper portion that forms sidewalls of the excavated feature. The method includes depositing a lower electrode layer in the feature, depositing an electrically insulating layer on the lower electrode layer, and depositing an upper electrode layer on the electrically insulating layer to form the MIM capacitor. The method includes removing an upper portion of the MIM capacitor to expose an upper surface of the electrode layers and then selectively etching one of the electrode layers to recess one of the electrode layers. This recess isolates the electrodes from each other and reduces the likelihood of a current leakage path between the electrodes.
摘要:
Methods to form memory devices having a MIM capacitor with a recessed electrode are described. In one embodiment, a method of forming a MIM capacitor with a recessed electrode includes forming an excavated feature defined by a lower portion that forms a bottom and an upper portion that forms sidewalls of the excavated feature. The method includes depositing a lower electrode layer in the feature, depositing an electrically insulating layer on the lower electrode layer, and depositing an upper electrode layer on the electrically insulating layer to form the MIM capacitor. The method includes removing an upper portion of the MIM capacitor to expose an upper surface of the electrode layers and then selectively etching one of the electrode layers to recess one of the electrode layers. This recess isolates the electrodes from each other and reduces the likelihood of a current leakage path between the electrodes.
摘要:
Embodiments herein describe techniques for a semiconductor device including a substrate and a transistor above the substrate. The transistor includes a channel layer above the substrate, a conductive contact stack above the substrate and in contact with the channel layer, and a gate electrode separated from the channel layer by a gate dielectric layer. The conductive contact stack may be a drain electrode or a source electrode. In detail, the conductive contact stack includes at least a metal layer, and at least a metal sealant layer to reduce hydrogen diffused into the channel layer through the conductive contact stack. Other embodiments may be described and/or claimed.
摘要:
Embodiments of the present disclosure describe a selective diffusion barrier between metals of an integrated circuit (IC) device and associated techniques and configurations. In one embodiment, an apparatus includes a dielectric material, a first interconnect structure comprising a first metal disposed in the dielectric material, a second interconnect structure comprising a second metal disposed in the dielectric material and electrically coupled with the first interconnect structure and a diffusion barrier disposed at an interface between the first interconnect structure and the second interconnect structure, wherein the first metal and the second metal have a different chemical composition, material of the diffusion barrier and the second metal have a different chemical composition and material of the diffusion barrier is not disposed directly between the second metal and the dielectric material. Other embodiments may be described and/or claimed.
摘要:
Vertical meander inductors for small core voltage regulators and approaches to fabricating vertical meander inductors for small core voltage regulators are described. For example, a semiconductor die includes a substrate. An integrated circuit is disposed on an active surface of the substrate. An inductor is coupled to the integrated circuit. The inductor is disposed conformal with an insulating layer disposed on an essentially planar surface of the substrate. The insulating layer has an undulating topography.
摘要:
Embodiments of the invention describe low capacitance interconnect structures for semiconductor devices and methods for manufacturing such devices. According to an embodiment of the invention, a low capacitance interconnect structure comprises an interlayer dielectric (ILD). First and second interconnect lines are disposed in the ILD in an alternating pattern. The top surfaces of the first interconnect lines may be recessed below the top surfaces of the second interconnect lines. Increases in the recess of the first interconnect lines decreases the line-to-line capacitance between neighboring interconnects. Further embodiments include utilizing different dielectric materials as etching caps above the first and second interconnect lines. The different materials may have a high selectivity over each other during an etching process. Accordingly, the alignment budget for contacts to individual interconnect lines is increased.
摘要:
Embodiments of the invention describe low capacitance interconnect structures for semiconductor devices and methods for manufacturing such devices. According to an embodiment of the invention, a low capacitance interconnect structure comprises an interlayer dielectric (ILD). First and second interconnect lines are disposed in the ILD in an alternating pattern. The top surfaces of the first interconnect lines may be recessed below the top surfaces of the second interconnect lines. Increases in the recess of the first interconnect lines decreases the line-to-line capacitance between neighboring interconnects. Further embodiments include utilizing different dielectric materials as etching caps above the first and second interconnect lines. The different materials may have a high selectivity over each other during an etching process. Accordingly, the alignment budget for contacts to individual interconnect lines is increased.
摘要:
Described herein are techniques structures related to forming barrier walls, capping, or alloys/compounds such as treating copper so that an alloy or compound is formed, to reduce electromigration (EM) and strengthen metal reliability which degrades as the length of the lines increases in integrated circuits.
摘要:
Techniques are disclosed for forming a directly plateable diffusion barrier within an interconnect structure to prevent diffusion of interconnect fill metal into surrounding dielectric material and lower metal layers. The barrier can be used in back-end interconnect metallization processes and, in an embodiment, renders a seed layer unnecessary. In accordance with various example embodiments, the barrier can be implemented, for instance, as: (1) a single layer of ruthenium silicide (RuSix) or ruthenium silicide nitride (RuSixNy); (2) a bi-layer of Ru/RuSix, RuSix/Ru, Ru/RuSixNy, or RuSixNy/Ru; or (3) a tri-layer of Ru/RuSix/Ru or Ru/RuSixNy/Ru. In some embodiments, Si and/or N concentrations can be adjusted to alter the barrier's degree of diffusion protection, receptiveness to the fill metal, and/or electrical conductivity.