摘要:
A semiconductor system (300) has one or more packaged active subsystems (310, 330); each subsystem has a substrate with electrical contact pads and one or more semiconductor chips stacked on top of each other, assembled on the substrate. The system further has a packaged passive subsystem (320) including a substrate with electrical contacts and passive electrical components, such as resistors, capacitors, and indictors. The passive subsystem is stacked with the active subsystems and connected to them by solder bodies.
摘要:
A semiconductor system (200) of one or more semiconductor interposers (201) with a certain dimension (210), conductive vias (212) extending from the first to the second surface, with terminals and attached non-reflow metal studs (215) at the ends of the vias. A semiconducting interposer surface may include discrete electronic components or an integrated circuit. One or more semiconductor chips (202, 203) have a dimension (220, 230) narrower than the interposer dimension, and an active surface with terminals and non-reflow metal studs (224, 234). One chip is flip-attached to the first interposer surface, and another chip to the second interposer surface, so that the interposer dimension projects over the chip dimension. An insulating substrate (204) has terminals and reflow bodies (242) to connect to the studs of the projecting interposer.
摘要:
A semiconductor system (200) of one or more semiconductor interposers (201) with a certain dimension (210), conductive vias (212) extending from the first to the second surface, with terminals and attached non-reflow metal studs (215) at the ends of the vias. A semiconducting interposer surface may include discrete electronic components or an integrated circuit. One or more semiconductor chips (202, 203) have a dimension (220, 230) narrower than the interposer dimension, and an active surface with terminals and non-reflow metal studs (224, 234). One chip is flip-attached to the first interposer surface, and another chip to the second interposer surface, so that the interposer dimension projects over the chip dimension. An insulating substrate (204) has terminals and reflow bodies (242) to connect to the studs of the projecting interposer.
摘要:
A high density interconnect device which creates a thin, electrically and thermally high performance package for semiconductor devices having a mechanically stable and high thermal conductivity substrate. Cavities in the substrate accommodate semiconductor devices attached directly to the substrate. The semiconductor devices include at least one optical receiver and/or transmitter. A thin film overlay having multiple layers interconnects the semiconductor devices to an array of pads on a surface of the thin film overlay facing away from the substrate. Connectors are attached to the pads to provide direct electrical and mechanical attachment to other system hardware. In one embodiment, the optical receiver and/or transmitter receives and/or transmits light signals through the thin film overlay. In another embodiment, the optical receiver and/or transmitter receives and/or transmits light signals through holes formed through the thin film overlay. The holes may be back filled with an optical quality material.
摘要:
A microactuator, or micromotor, (60) and method for making it are presented such that a symmetrical build up of material is performed on opposite sides of a substrate. This reduces mechanical stresses in the device. In its construction, respective layers of circuit portions (108, 110) are built on each side of the structure, thereby eliminating the need to stack complex patterns. Stacking one complex pattern on top of a similar pattern is difficult because the surface, which is the base for subsequent layers, is not flat. The photolithography process that forms these patterns is not very forgiving to non-flat surfaces. Avoiding the stacked layers also allows thicker conductors to be considered for each circuit. Thicker circuits increase current carrying capacity, which in one of the key variables increase the power of the micromotor.
摘要:
A hermetic MEMS device (100) comprising a carrier (110) having a surface (111) including a device (101) and an attachment stripe (122), the stripe spaced from the device and surrounding the device; a metallic foil (102) having a central bulge portion (103) and a peripheral rim portion (104) meeting the stripe, the bulge cross section parallel to the carrier monotonically decreasing from the rim (104) towards the bulge apex (105); and the foil positioned over the carrier surface so that the bulge arches over the device and the rim forms a seal with the stripe.
摘要:
A semiconductor system (200) of one or more semiconductor interposers (201) with a certain dimension (210), conductive vias (212) extending from the first to the second surface, with terminals and attached non-reflow metal studs (215) at the ends of the vias. A semiconducting interposer surface may include discrete electronic components or an integrated circuit. One or more semiconductor chips (202, 203) have a dimension (220, 230) narrower than the interposer dimension, and an active surface with terminals and non-reflow metal studs (224, 234). One chip is flip-attached to the first interposer surface, and another chip to the second interposer surface, so that the interposer dimension projects over the chip dimension. An insulating substrate (204) has terminals and reflow bodies (242) to connect to the studs of the projecting interposer.
摘要:
A high density interconnect land grid array package device combines various electronic packaging techniques in a unique way to create a very thin, electrically and thermally high performance package for single or multiple semiconductor devices. A thin and mechanically stable substrate or packaging material (12) is selected that also has high thermal conductivity. Cavities (14) in the substrate or packaging material (12) accommodate one or more semiconductor devices that are attached directly to the substrate or packaging material. At least one of said semiconductor devices includes at least one optical receiver and/or transmitter. A thin film overlay (18) having multiple layers interconnects the one or more semiconductor devices to an array of pads (20) on a surface of the thin film overlay facing away from the substrate or packaging material. Solder balls (22), conductive adhesive or elastomeric connectors are attached to the pads to provide direct electrical and mechanical attachment means to other system hardware. In one embodiment of the invention, the optical receiver and/or transmitter receives and/or transmits light signals through the thin film overlay. In another embodiment of the invention, the optical receiver and/or transmitter receives and/or transmits light signals through holes (47) formed through the thin film overlay. The holes may be back filled with an optical quality material.
摘要:
A packaged semiconductor device (200) with a substrate (220) having, sandwiched in an insulator (221), a flat sheet-like sieve member (240) made of a non-linear material switching from insulator to conductor mode at a preset voltage. Both member surfaces are free of indentations; the member is perforated by through-holes, which are grouped into a first set (241) and a second set (242). Metal traces (251) over one member surface are positioned across the first set through-holes (241); each trace is connected to a terminal on the substrate top and, through the hole, to a terminal on the substrate bottom. Analogous for metal traces (252) over the opposite member surface and second set through-holes (242). Traces (252) overlap with a portion of traces (252) to form the locations for the conductivity switches, creating local ultra-low resistance bypasses to ground for discharging overstress events.
摘要:
A hermetic MEMS device (100) comprising a carrier (110) having a surface (111) including a device (101) and an attachment stripe (122), the stripe spaced from the device and surrounding the device; a metallic foil (102) having a central bulge portion (103) and a peripheral rim portion (104) meeting the stripe, the bulge cross section parallel to the carrier monotonically decreasing from the rim (104) towards the bulge apex (105); and the foil positioned over the carrier surface so that the bulge arches over the device and the rim forms a seal with the stripe.