Maximizing electrical doping while reducing material cracking in III-V
nitride semiconductor devices
    1.
    发明授权
    Maximizing electrical doping while reducing material cracking in III-V nitride semiconductor devices 失效
    最大化电掺杂同时减少III-V族氮化物半导体器件中的材料开裂

    公开(公告)号:US5729029A

    公开(公告)日:1998-03-17

    申请号:US709355

    申请日:1996-09-06

    申请人: Serge L. Rudaz

    发明人: Serge L. Rudaz

    摘要: N-type doping in III-V-nitride semiconductor compounds, i.e. GaN-based compounds such as GaN, AlGaN, AlInN, InGaN, or AlGaInN, can be optimized to improve N-contact electrical resistance, carrier injection, forward voltage, and recombination characteristics without inducing cracking of the device layers. The N-type layer is constructed of sub-layers such that an N-type sub-layer is provided for each desired characteristic or property. The thickness of each sub-layer is carefully selected to avoid material cracking: the higher the required doping, the smaller the corresponding thickness. In illustration, the buffer layer of a light emitting device (LED) has three sub-layers. The first sub-layer is lightly doped to avoid cracking and is grown to the desired thickness for good material quality. The second sub-layer is heavily doped to provide good N-contact and electrical resistivity characteristics and is kept correspondingly as thin as necessary to avoid material cracking. The third sub-layer is doped to the desired level to provide optimum carrier injection and pair recombination in the active layer of the device.

    摘要翻译: 可以优化III-V族氮化物半导体化合物中的N型掺杂,即GaN基化合物如GaN,AlGaN,AlInN,InGaN或AlGaInN,以改善N-接触电阻,载流子注入,正向电压和复合 特性而不引起器件层的破裂。 N型层由子层构成,以便为每个期望的特性或性质提供N型子层。 仔细选择每个子层的厚度以避免材料破裂:所需掺杂越高,相应厚度越小。 在图示中,发光器件(LED)的缓冲层具有三个子层。 第一子层被轻掺杂以避免开裂,并且生长到期望的厚度以获得良好的材料质量。 第二子层被重掺杂以提供良好的N接触和电阻率特性,并且根据需要保持相应的薄以避免材料开裂。 将第三子层掺杂到期望的水平以在器件的有源层中提供最佳的载流子注入和对重组。

    Multi-layer highly reflective ohmic contacts for semiconductor devices
    2.
    发明授权
    Multi-layer highly reflective ohmic contacts for semiconductor devices 有权
    用于半导体器件的多层高反射欧姆接触

    公开(公告)号:US06992334B1

    公开(公告)日:2006-01-31

    申请号:US09469652

    申请日:1999-12-22

    IPC分类号: H01L33/00

    CPC分类号: H01L33/405

    摘要: A high performance, highly reflective ohmic contact, in the visible spectrum (400 nm–750 nm), has the following multi-layer metal profile. A uniform and thin ohmic contact material is deposited and optionally alloyed to the semiconductor surface. A thick reflector layer selected from a group that includes Al, Cu, Au, Rh, Pd, Ag and any multi-layer combinations is deposited over the ohmic contact material.

    摘要翻译: 在可见光谱(400nm-750nm)中的高性能,高反射欧姆接触具有以下多层金属分布。 均匀且薄的欧姆接触材料被沉积并任选地与半导体表面合金化。 选自包括Al,Cu,Au,Rh,Pd,Ag以及任何多层组合的组的厚反射层沉积在欧姆接触材料上。

    Light emitting semiconductor method and device
    6.
    发明授权
    Light emitting semiconductor method and device 有权
    发光半导体方法及器件

    公开(公告)号:US06946685B1

    公开(公告)日:2005-09-20

    申请号:US09652194

    申请日:2000-08-31

    IPC分类号: H01L29/22 H01L33/32 H01L33/40

    CPC分类号: H01L33/405 H01L33/32

    摘要: Silver electrode metallization in light emitting devices is subject to electrochemical migration in the presence of moisture and an electric field. Electrochemical migration of the silver metallization to the pn junction of the device results in an alternate shunt path across the junction, which degrades efficiency of the device. In accordance with a form of this invention, a migration barrier is provided for preventing migration of metal from at least one of the electrodes onto the surface of the semiconductor layer with which the electrode is in contact.

    摘要翻译: 发光器件中的银电极金属化在水分和电场的存在下经历电化学迁移。 银金属化物到器件的pn结的电化学迁移导致跨接头的交替分流路径,这降低了器件的效率。 根据本发明的形式,提供了一种迁移屏障,用于防止金属从至少一个电极移动到与电极接触的半导体层的表面上。