摘要:
In embodiments of the invention, a passivation layer is disposed over a side of a semiconductor structure including a light emitting layer disposed between an n-type region and a p-type region. A material configured to adhere to an underfill is disposed over an etched surface of the semiconductor structure.
摘要:
A transient voltage suppressor circuit is disclosed for a plurality (N) of LEDs connected in series. Only one zener diode is created for connection to each node between LEDs, and a pair of zener diodes (the “end” zener diodes) are connected to the two pins (anode and cathode pads) of the series string. Therefore, only N+1 zener diodes are used. The end zener diodes (Q1 and Qn+1) effectively create back-to-back zener diodes across the two pins since the zener diodes share a common p+ substrate. The n+ regions of the end zener diodes Q1 and Qn+1 have the highest breakdown voltage requirement and must be placed relatively far apart. Adjacent n+ regions of the intermediate zener diodes have a much lower breakdown voltage requirement so may be located close together. Since there are fewer zener diodes and their spacings may be small, the zener diodes may be placed within a very small footprint or can be larger for better suppressor performance.
摘要:
A light emitting device includes a semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region. A contact is formed on the semiconductor structure, the contact comprising a reflective metal in direct contact with the semiconductor structure and an additional metal or semi-metal disposed within the reflective metal. In some embodiments, the additional metal or semi-metal is a material with higher electronegativity than the reflective metal. The presence of the high electronegativity material in the contact may increase the overall electronegativity of the contact, which may reduce the forward voltage of the device. In some embodiments, an oxygen-gathering material is included in the contact.
摘要:
P-type layers of a GaN based light-emitting device are optimized for formation of Ohmic contact with metal. In a first embodiment, a p-type GaN transition layer with a resistivity greater than or equal to about 7 Ω cm is formed between a p-type conductivity layer and a metal contact. In a second embodiment, the p-type transition layer is any III-V semiconductor. In a third embodiment, the p-type transition layer is a superlattice. In a fourth embodiment, a single p-type layer of varying composition and varying concentration of dopant is formed.
摘要:
Silver electrode metallization in light emitting devices is subject to electrochemical migration in the presence of moisture and an electric field. Electrochemical migration of the silver metallization to the pn junction of the device results in an alternate shunt path across the junction, which degrades efficiency of the device. In accordance with a form of this invention, a migration barrier is provided for preventing migration of metal from at least one of the electrodes onto the surface of the semiconductor layer with which the electrode is in contact.
摘要:
A light-emitting semiconductor device includes a stack of layers including an active region. The active region includes a semiconductor selected from the group consisting of III-Phosphides, III-Arsenides, and alloys thereof. A superstrate substantially transparent to light emitted by the active region is disposed on a first side of the stack. First and second electrical contacts electrically coupled to apply a voltage across the active region are disposed on a second side of the stack opposite to the first side. In some embodiments, a larger fraction of light emitted by the active region exits the stack through the first side than through the second side. Consequently, the light-emitting semiconductor device may be advantageously mounted as a flip chip to a submount, for example.
摘要:
In accordance with the invention, a light emitting device includes a substrate, a layer of first conductivity type overlying the substrate, a light emitting layer overlying the layer of first conductivity type, and a layer of second conductivity type overlying the light emitting layer. A plurality of vias are formed in the layer of second conductivity type, down to the layer of first conductivity type. The vias may be formed by, for example, etching, ion implantation, or selective growth of the layer of second conductivity type. A set of first contacts electrically contacts the layer of first conductivity type through the vias. A second contact electrically contacts the layer of second conductivity type. In some embodiments, the area of the second contact is at least 75% of the area of the device. In some embodiments, the vias are between 2 and 100 microns wide and spaced between 5 and 1000 microns apart.
摘要:
The amount of usefully captured light in an optical system may be increased by concentrating light in a region where it can be collected by the optical system. A light emitting device may include a substrate and a plurality of semiconductor layers. In some embodiments, a reflective material overlies a portion of the substrate and has an opening through which light exits the device. In some embodiments, reflective material overlies a portion of a surface of the semiconductor layers and has an opening through which light exits the device. In some embodiments, a light emitting device includes a transparent member with a first surface and an exit surface. At least one light emitting diode is disposed on the first surface. The transparent member is shaped such that light emitted from the light emitting diode is directed toward the exit surface.
摘要:
The present invention is an inverted III-nitride light-emitting device (LED) with enhanced total light generating capability. A large area device has an n-electrode that interposes the p-electrode metallization to provide low series resistance. The p-electrode metallization is opaque, highly reflective, and provides excellent current spreading. The p-electrode at the peak emission wavelength of the LED active region absorbs less than 25% of incident light per pass. A submount may be used to provide electrical and thermal connection between the LED die and the package. The submount material may be Si to provide electronic functionality such as voltage-compliance limiting operation. The entire device, including the LED-submount interface, is designed for low thermal resistance to allow for high current density operation. Finally, the device may include a high-refractive-index (n>1.8) superstrate.
摘要:
A transient voltage suppressor circuit is disclosed for a plurality (N) of LEDs connected in series. Only one zener diode is created for connection to each node between LEDs, and a pair of zener diodes (the “end” zener diodes) are connected to the two pins (anode and cathode pads) of the series string. Therefore, only N+1 zener diodes are used. The end zener diodes (Q1 and Qn+1) effectively create back-to-back zener diodes across the two pins since the zener diodes share a common p+ substrate. The n+ regions of the end zener diodes Q1 and Qn+1 have the highest breakdown voltage requirement and must be placed relatively far apart. Adjacent n+ regions of the intermediate zener diodes have a much lower breakdown voltage requirement so may be located close together. The zener diodes may be placed within a very small footprint or can be larger for better suppressor performance.