摘要:
Embodiments of the invention generally provide a fluid delivery system for an electrochemical plating platform. The fluid delivery system is configured to supply multiple chemistries to multiple plating cells with minimal bubble formation in the fluid delivery system. The system includes a solution mixing system, a fluid distribution manifold in communication with the solution mixing system, a plurality of fluid conduits in fluid communication with the fluid distribution manifold, and a plurality of fluid tanks, each of the plurality of fluid tanks being in fluid communication with at least one of the plurality of fluid conduits.
摘要:
Embodiments of the invention generally provide an electrochemical plating system. The plating system includes a substrate loading station positioned in communication with a mainframe processing platform, at least one substrate plating cell positioned on the mainframe, at least one substrate bevel cleaning cell positioned on the mainframe, and a stacked substrate annealing station positioned in communication with at least one of the mainframe and the loading station, each chamber in the stacked substrate annealing station having a heating plate, a cooling plate, and a substrate transfer robot therein.
摘要:
A method for cleaning the electrical contact areas or substrate contact areas of an electrochemical plating contact ring is provided. Embodiments of the method include positioning a substrate on a substrate support member having one or more electrical contacts, chemically plating a metal layer on at least a portion of a surface of the substrate, removing the processed substrate from the support member, and cleaning the one or more electrical contacts with a vapor mixture comprising an alcohol. In another aspect, the method includes spraying the vapor mixture on the electrical contacts while rotating the substrate support member.
摘要:
A method and apparatus for plating a metal onto a substrate. The apparatus includes a fluid basin configured to contain a plating solution, an anode fluid volume positioned in a lower portion of the fluid basin, a cathode fluid volume positioned in an upper portion of the fluid basin, an ionic membrane positioned to separate the anode fluid volume from the cathode fluid volume, a plating electrode centrally positioned in the anode fluid volume, and a deplating electrode positioned adjacent the plating electrode in the anode fluid volume.
摘要:
An electroless deposition system is provided. The system includes a processing mainframe, at least one substrate cleaning station positioned on the mainframe, and an electroless deposition station positioned on the mainframe. The electroless deposition station includes an environmentally controlled processing enclosure, a first processing station configured to clean and activate a surface of a substrate, a second processing station configured to electrolessly deposit a layer onto the surface of the substrate, and a substrate transfer shuttle positioned to transfer substrates between the first and second processing stations. The system also includes a substrate transfer robot positioned on the mainframe and configured to access an interior of the processing enclosure. The system also includes a substrate a fluid delivery system that is configured to deliver a processing fluid by use of a spraying process to a substrate mounted in the processing enclosure.
摘要:
Embodiments of the invention generally provide a fluid processing platform. The platform includes a mainframe having a substrate transfer robot, at least one substrate cleaning cell on the mainframe, and at least one processing enclosure. The processing enclosure includes a gas supply positioned in fluid communication with an interior of the processing enclosure, a first fluid processing cell positioned in the enclosure, a first substrate head assembly positioned to support a substrate for processing in the first fluid processing cell, a second fluid processing cell positioned in the enclosure, a second head assembly positioned to support a substrate for processing in the second fluid processing cell, and a substrate shuttle positioned between the first and second fluid processing cells and being configured to transfer substrates between the fluid processing cells and the mainframe robot.
摘要:
A method and apparatus for electrolessly depositing a multilayer film using a fluid processing solution(s) that can clean and then electrolessly deposit a metal films having discrete or varying composition onto a conductive surface using a single processing cell. The process advantageously includes in-situ cleaning step in order to minimize the formation of oxides on the conductive surfaces, by minimizing or preventing the exposure of the conductive surfaces to oxygen (e.g., air) between the cleaning step and an electroless deposition process step(s). In one aspect, the chemical components used in the fluid processing solution(s) are selected so that the interaction of various chemical components will not drastically change the desirable properties of each of the interacting fluids, generate particles in the fluid lines or on the surface of the substrate, and/or generate a significant amount of heat which can damage the hardware or significantly change the electroless process results. In another aspect, no rinsing steps are required between the various deposition steps used to form the various layers, since the processing fluids are selected so that they are compatible with each other. In another aspect, throughout the process the conductive surfaces are continually in contact with various chemical components that will inhibit oxidation of the conductive surfaces and/or reduce the oxidized metal surfaces. In one aspect, a multilayer structure can formed on the surface of the conductive surface using the continuous electroless deposition process where the first layer of the multilayer structure has at least two of the following elements cobalt (Co), tungsten (W), phosphorus (P) or boron (B); and a second layer contains at least two of the following elements cobalt (Co), boron (B) or phosphorus (P). Formation of a multilayer structure on the conductive surface may have advantage since each deposited layer can have differing properties which when placed together will form a layer that has improved properties over a single deposited layer.
摘要:
Embodiments of the invention generally provide a fluid processing platform. The platform includes a mainframe having a substrate transfer robot, at least one substrate cleaning cell on the mainframe, and at least one processing enclosure. The processing enclosure includes a gas supply positioned in fluid communication with an interior of the processing enclosure, a first fluid processing cell positioned in the enclosure, a first substrate head assembly positioned to support a substrate for processing in the first fluid processing cell, a second fluid processing cell positioned in the enclosure, a second head assembly positioned to support a substrate for processing in the second fluid processing cell, and a substrate shuttle positioned between the first and second fluid processing cells and being configured to transfer substrates between the fluid processing cells and the mainframe robot.
摘要:
A method for fabricating a capping layer with enhanced barrier resistance to both copper and oxygen diffusion, comprises forming a capping layer on a conductive surface of an interconnect, wherein the capping layer comprises cobalt (Co), tungsten (W), rhenium (Re), and at least one of phosphorus (P) and boron (B). In an embodiment of the invention, forming the capping layer comprises exposing the conductive surface to an electroless capping solution comprising a cobalt source, a tungsten source, a rhenium source, and at least one of a phosphorus source and a boron source, and annealing the capping layer.
摘要:
An electroless deposition system is provided. The system includes a processing mainframe, at least one substrate cleaning station positioned on the mainframe, and an electroless deposition station positioned on the mainframe. The electroless deposition station includes an environmentally controlled processing enclosure, a first processing station configured to clean and activate a surface of a substrate, a second processing station configured to electrolessly deposit a layer onto the surface of the substrate, and a substrate transfer shuttle positioned to transfer substrates between the first and second processing stations. The system also includes a substrate transfer robot positioned on the mainframe and configured to access an interior of the processing enclosure. The system also includes a substrate a fluid delivery system that is configured to deliver a processing fluid by use of a spraying process to a substrate mounted in the processing enclosure.