Light sensor having a transparent substrate, a contiguous IR suppression filter and through-substrate vias
    3.
    发明授权
    Light sensor having a transparent substrate, a contiguous IR suppression filter and through-substrate vias 有权
    光传感器具有透明基板,连续IR抑制滤光器和贯通基板通孔

    公开(公告)号:US08791404B2

    公开(公告)日:2014-07-29

    申请号:US13337864

    申请日:2011-12-27

    IPC分类号: G01J3/50

    摘要: Techniques are described to furnish an IR suppression filter that is formed on a glass substrate to a light sensor. In one or more implementations, a light sensor includes a substrate having a surface. One or more photodetectors are formed in the substrate and configured to detect light and provide a signal in response thereto. An IR suppression filter configured to block infrared light from reaching the surface is formed on a glass substrate. The light sensor also includes a plurality of color pass filters disposed over the surface. The color pass filters are configured to filter visible light to pass light in a limited spectrum of wavelengths to the one or more photodetectors. A buffer layer is disposed over the surface and configured to encapsulate the plurality of color pass filters and adhesion layer. The light sensor further includes through-silicon vias to provide electrical interconnections between different conductive layers.

    摘要翻译: 描述了技术来提供在玻璃基板上形成到光传感器的IR抑制滤光器。 在一个或多个实施方式中,光传感器包括具有表面的基板。 在衬底中形成一个或多个光电检测器,并配置成检测光并响应于此提供信号。 构造成阻挡红外光到达表面的IR抑制滤光器形成在玻璃基板上。 光传感器还包括布置在表面上的多个彩色滤光片。 彩色通过滤光器被配置为过滤可见光以将有限的波长光中的光传递到一个或多个光电检测器。 缓冲层设置在表面上并且被配置为封装多个彩色通过滤光片和粘附层。 光传感器还包括穿硅通孔,以提供不同导电层之间的电互连。

    Etchant treatment processes for substrate surfaces and chamber surfaces
    4.
    发明授权
    Etchant treatment processes for substrate surfaces and chamber surfaces 有权
    底物表面和室表面的蚀刻处理工艺

    公开(公告)号:US08445389B2

    公开(公告)日:2013-05-21

    申请号:US13346503

    申请日:2012-01-09

    IPC分类号: H01L21/302 H01L21/461

    摘要: Embodiments of the invention generally relate to methods for treating a silicon-containing material on a substrate surface and performing a chamber clean process. In one embodiment, a method includes positioning a substrate containing a silicon material having a contaminant thereon within a process chamber and exposing the substrate to an etching gas containing chlorine gas and a silicon source gas while removing the contaminant and maintaining a temperature of the substrate within a range from about 500° C. to less than about 800° C. during an etching process. The method further includes exposing the substrate to a deposition gas after the etching process during a deposition process and exposing the process chamber to a chamber clean gas containing chlorine gas and the silicon source gas after the deposition process during a chamber clean process. The chamber clean process limits the etching of quartz and metal surfaces within the process chamber.

    摘要翻译: 本发明的实施方案一般涉及在基材表面处理含硅材料并进行室清洁工艺的方法。 在一个实施例中,一种方法包括将含有其上具有污染物的硅材料的衬底定位在处理室内,并将衬底暴露于含有氯气和硅源气体的蚀刻气体,同时除去污染物并保持衬底的温度 在蚀刻过程中约500℃至小于约800℃的范围。 该方法还包括在沉积工艺期间在蚀刻工艺之后将衬底暴露于沉积气体,并且在室清洁过程中在沉积过程之后将处理室暴露于含有氯气的室清洁气体和沉积工艺之后的硅源气体。 室清洁过程限制了处理室内的石英和金属表面的蚀刻。

    Selective epitaxy process with alternating gas supply
    9.
    发明授权
    Selective epitaxy process with alternating gas supply 有权
    选择性外延过程与交替供气

    公开(公告)号:US07572715B2

    公开(公告)日:2009-08-11

    申请号:US11745416

    申请日:2007-05-07

    IPC分类号: C23C16/24 H01L21/20 H01L21/36

    摘要: In one example, a method of epitaxially forming a silicon-containing material on a substrate surface is presented which includes positioning a substrate into a process chamber. The substrate has a monocrystalline surface and at least a second surface, such as an amorphous surface and/or a polycrystalline surface. The substrate is exposed to a deposition gas to deposit an epitaxial layer on the monocrystalline surface and a polycrystalline layer on the second surface. The deposition gas preferably contains a silicon source and at least a second elemental source, such as a germanium source, a carbon source and/or combinations thereof. Thereafter, the method further provides exposing the substrate to an etchant gas to etch the polycrystalline layer and the epitaxial layer in a manner such that the polycrystalline layer is etched at a faster rate than the epitaxial layer. The method may further include a deposition cycle that includes repeating the exposure of the substrate to the deposition and etchant gases to form a silicon-containing material with a predetermined thickness.

    摘要翻译: 在一个实例中,提出了在衬底表面上外延形成含硅材料的方法,其包括将衬底定位到处理室中。 衬底具有单晶表面和至少第二表面,例如非晶表面和/或多晶表面。 将衬底暴露于沉积气体,以在第一表面上沉积外延层和在第二表面上沉积多晶层。 沉积气体优选地包含硅源和至少第二元素源,例如锗源,碳源和/或其组合。 此后,该方法进一步提供将衬底暴露于蚀刻剂气体以蚀刻多​​晶层和外延层,使得以比外延层更快的速率蚀刻多晶层。 该方法还可以包括沉积循环,其包括重复将衬底暴露于沉积和蚀刻剂气体以形成具有预定厚度的含硅材料。

    Waveguides such as SiGeC waveguides and method of fabricating the same
    10.
    发明授权
    Waveguides such as SiGeC waveguides and method of fabricating the same 失效
    波导如SiGeC波导及其制造方法

    公开(公告)号:US06905542B2

    公开(公告)日:2005-06-14

    申请号:US10014466

    申请日:2001-12-11

    摘要: A waveguide structure and method of fabricating the same, the method comprising forming a first graded layer on a substrate, wherein the first graded layer comprises a first and a second optical material, and a lattice constant adjusting material, wherein the concentration of the second optical material increases with the height of the first graded layer and the concentration of the lattice constant adjusting material varies in proportion to the second optical material; and forming a second graded layer, the second graded layer comprising the first and second optical materials, and a lattice constant adjusting material, wherein the concentration of the second optical material decreases with the height of the second graded layer and the concentration of the lattice constant adjusting material varies in proportion to the second optical material.

    摘要翻译: 一种波导结构及其制造方法,所述方法包括在衬底上形成第一渐变层,其中所述第一渐变层包括第一和第二光学材料以及晶格常数调节材料,其中所述第二光学器件的浓度 材料随着第一梯度层的高度而增加,并且晶格常数调节材料的浓度与第二光学材料成比例地变化; 以及形成第二梯度层,所述第二梯度层包括所述第一和第二光学材料,以及晶格常数调节材料,其中所述第二光学材料的浓度随着所述第二梯度层的高度而减小,并且所述晶格常数的浓度 调整材料与第二光学材料成比例地变化。