摘要:
An apparatus and method for detecting characteristics of a microelectronic substrate. The microelectronic substrate can have a first surface with first topographical features, such as roughness elements, and a second surface facing opposite from the first surface and having second topographical features, such as protruding conductive structures. In one embodiment, the apparatus can include a support member configured to carry the microelectronic substrate with a first portion of the first surface exposed and a second portion of the second surface exposed. The apparatus can further include a topographical feature detector positioned proximate to support member and aligned with the first portion of the first surface of the microelectronic substrate to detect characteristics, such as a roughness, of the first surface while the microelectronic substrate is carried by the support member.
摘要:
An apparatus and method for detecting characteristics of a microelectronic substrate. The microelectronic substrate can have a first surface with first topographical features, such as roughness elements, and a second surface facing opposite from the first surface and having second topographical features, such as protruding conductive structures. In one embodiment, the apparatus can include a support member configured to carry the microelectronic substrate with a first portion of the first surface exposed and a second portion of the second surface exposed. The apparatus can further include a topographical feature detector positioned proximate to support member and aligned with the first portion of the first surface of the microelectronic substrate to detect characteristics, such as a roughness, of the first surface while the microelectronic substrate is carried by the support member.
摘要:
An apparatus and method for detecting characteristics of a microelectronic substrate. The microelectronic substrate can have a first surface with first topographical features, such as roughness elements, and a second surface facing opposite from the first surface and having second topographical features, such as protruding conductive structures. In one embodiment, the apparatus can include a support member configured to carry the microelectronic substrate with a first portion of the first surface exposed and a second portion of the second surface exposed. The apparatus can further include a topographical feature detector positioned proximate to support member and aligned with the first portion of the first surface of the microelectronic substrate to detect characteristics, such as a roughness, of the first surface while the microelectronic substrate is carried by the support member.
摘要:
A method for designing a carrier substrate includes configuring at least one die-attach location and one or more terminals that protrude from a surface of the carrier substrate so as to prevent adhesive material from contaminating connection surfaces thereof. The method may also include configuring the carrier substrate to include one or more recessed areas that laterally surround at least a portion of the die-attach location to receive excess adhesive.
摘要:
Apparatus and methods relating to semiconductor assemblies. A semiconductor assembly includes an interposer which may be constructed from a flexible material, such as a polyimide tape. A pattern of conductive traces disposed on a first surface of the interposer is in electrical communication with a semiconductor die attached to the first surface. Interconnect recesses accessible on the opposite second surface expose one or more conductive traces. A conductive element, such as a solder ball, disposed substantially within the interconnect recess allows the assembly to be mounted on a substrate or a similar assembly. By substantially containing the conductive element within the interconnect recess, the height of the completed assembly is reduced. Assemblies may be stacked to form multidie assemblies. Interconnect structures, such as connection pads, or enlarged traces upon the first surface are employed to connect stacked assemblies.
摘要:
A carrier substrate includes at least one die-attach location and one or more terminals that protrude from a surface of the carrier substrate so as to prevent adhesive material from contaminating connection surfaces thereof. A solder mask for use on a carrier substrate includes a device-securing region positionable over at least a portion of a die-support location of the carrier substrate. Dams of the solder mask are positionable laterally adjacent to at least portions of the peripheries of corresponding terminals of the carrier substrate. The carrier substrate and solder mask may each include one or more recessed areas that laterally surround at least portions of their die-attach location and device-securing region, respectively, to receive some of the excess adhesive. Assemblies and packages including one or both of the carrier substrate and solder mask are also disclosed, as are assembly methods and methods for designing the carrier substrate and solder mask.
摘要:
Apparatus and methods are disclosed relating to semiconductor assemblies. A semiconductor assembly includes an interposer which may be constructed from a flexible material, such as a polyimide tape. A pattern of conductive traces disposed on a first surface of the interposer is in electrical communication with a semiconductor die attached to the first surface. Interconnect recesses accessible on the opposite second surface expose one or more conductive traces. A conductive element, such as a solder ball, disposed substantially within the interconnect recess allows the assembly to be mounted on a substrate or a similar assembly. By substantially containing the conductive element within the interconnect recess, the height of the completed assembly is reduced. Assemblies may be stacked to form multidie assemblies. Interconnect structures, such as connection pads, or enlarged traces upon the first surface are employed to connect stacked assemblies.
摘要:
Apparatus and methods relating to semiconductor assemblies. A semiconductor assembly includes an interposer which may be constructed from a flexible material, such as a polyimide tape. A pattern of conductive traces disposed on a first surface of the interposer is in electrical communication with a semiconductor die attached to the first surface. Interconnect recesses accessible on the opposite second surface expose one or more conductive traces. A conductive element, such as a solder ball, disposed substantially within the interconnect recess allows the assembly to be mounted on a substrate or a similar assembly. By substantially containing the conductive element within the interconnect recess, the height of the completed assembly is reduced. Assemblies may be stacked to form multidie assemblies. Interconnect structures, such as connection pads, or enlarged traces upon the first surface are employed to connect stacked assemblies.
摘要:
A solder mask for use on a carrier substrate includes a device-securing region positionable over at least a portion of a die-support location of the carrier substrate. Dams of the solder mask are positionable laterally adjacent to at least portions of the peripheries of corresponding terminals of the carrier substrate. A carrier substrate includes at least one die-attach location and one or more terminals that protrude from a surface of the carrier substrate so as to prevent adhesive material from contaminating connection surfaces thereof. The solder may be positioned or formed on the carrier substrate. The carrier substrate and solder mask may each include one or more recessed areas that laterally surround at least portions of their die-attach location and device-securing region, respectively, to receive excess adhesive.
摘要:
Methods for packaging microelectronic devices and microelectronic devices formed by such methods are disclosed herein. In one embodiment, a method includes coupling a plurality of microelectronic dies to a support member, covering the dies and at least a portion of the support member with a dielectric layer, forming a plurality of vias through the dielectric layer between the dies, and fabricating a plurality of conductive links in corresponding vias. In another embodiment, a plurality of microelectronic devices includes a support member, a plurality of microelectronic dies coupled to the support member, a dielectric layer over the dies and at least a portion of the support member, and a plurality of conductive links extending from a first surface of the dielectric layer to a second surface. The dies include an integrated circuit and a plurality of bond-pads coupled to the integrated circuit, and the conductive links are disposed between the dies.