摘要:
A waveguide type reduction type image sensor has a waveguide type light source having a light emitting element and a substrate including optical waveguides having a planar waveguide and a tapered waveguide. The waveguide type reduction type image sensor also has a light detecting section having a microlens array, an optical waveguide substrate and a CCD array. The microlens array converges reflected light from an original onto the incident face of the optical waveguide substrate. The optical waveguide substrate has L-shaped optical waveguides for guiding the converged light to the CCD array located on a substrate face perpendicular to the incident face. The CCD array converts the guided light to an electric signal and outputs this electric signal. A manufacturing method of this waveguide type reduction type image sensor is also shown.
摘要:
The invention provides a low resistivity silicon carbide single crystal wafer for fabricating semiconductor devices having excellent characteristics. The low resistivity silicon carbide single crystal wafer has a specific volume resistance of 0.001 Ωcm to 0.012 Ωcm and 90% or greater of the entire wafer surface area is covered by an SiC single crystal surface of a roughness (Ra) of 1.0 nm or less.
摘要:
Provided is a monocrystalline silicon carbide ingot containing a dopant element, wherein a maximum concentration of the dopant element is less than 5×1017 atoms/cm3 and the maximum concentration is 50 times or less than that of a minimum concentration of the dopant element. Also provided is a monocrystalline silicon carbide wafer made by cutting and polishing the monocrystalline silicon carbide ingot, wherein a electric resistivity at room temperature of the wafer is 5×103 Ωcm or more. Further provided is a method for manufacturing the monocrystalline silicon carbide including growing the monocrystalline silicon carbide on a seed crystal from a sublimation material by a sublimation method. The sublimation material includes a solid material containing a dopant element, and the specific surface of the solid material containing the dopant element is 0.5 m2/g or less.
摘要:
Provided is a monocrystalline silicon carbide ingot containing a dopant element, wherein a maximum concentration of the dopant element is less than 5×1017 atoms/cm3 and the maximum concentration is 50 times or less than that of a minimum concentration of the dopant element. Also provided is a monocrystalline silicon carbide wafer made by cutting and polishing the monocrystalline silicon carbide ingot, wherein a electric resistivity at room temperature of the wafer is 5×103 Ωcm or more. Further provided is a method for manufacturing the monocrystalline silicon carbide including growing the monocrystalline silicon carbide on a seed crystal from a sublimation material by a sublimation method. The sublimation material includes a solid material containing a dopant element, and the specific surface of the solid material containing the dopant element is 0.5 m2/g or less.
摘要:
A method for preparing an oxide dielectric thin film, for use in a dielectric thin film device, is described. Briefly, a film forming chamber is heated, and a thin film of dielectric, about 200 nm thick, is formed by sputtering or another deposition method. After the film is formed, evacuation of the film forming chamber is suspended, and oxygen gas is introduced into the chamber. The film is oxidized after its formation by maintaining the film in the oxygen atmosphere for a period of time, which can include cooling steps. The resulting dielectric thin film has excellent dielectric properties, such as a high dielectric constant and great dielectric strength.
摘要:
A method for manufacturing a semiconductor wafer includes a carbon layer formation step, a through hole formation step, a feed layer formation step, and an epitaxial layer formation step. In the carbon layer formation step, a carbon layer (71) is formed on a surface of a substrate (70) made of polycrystalline SiC. In the through hole formation step, through holes (71c) are formed in the carbon layer (71) formed on the substrate (70). In the feed layer formation step, a Si layer (72) and a 3C—SiC polycrystalline layer (73) are formed on a surface of the carbon layer (71). In the epitaxial layer formation step, the substrate (70) is heated so that a seed crystal made of 4H—SiC single crystal is formed on portions of the surface of the substrate (70) that are exposed through the through holes (71c), and a close-spaced liquid-phase epitaxial growth of the seed crystal is caused to form a 4H—SiC single crystal layer.
摘要:
Disclosed is a light-transmitting electromagnetic-shielding laminate, which is characterized in that two or more layers including an electromagnetic-shielding layer are arranged in layers using a (meth)acrylate adhesive composition which contains a (meth)acrylate monomer, a (meth)acrylate oligomer and at least one member selected from the group consisting of acrylic amide derivatives, silane compounds and organophosphorus compounds. Also disclosed is a light-transmitting radio wave absorber which is characterized in that a resistive layer, a dielectric spacer and a reflective layer are arranged in layers using a (meth)acrylate adhesive composition which contains a (meth)acrylate monomer, a (meth)acrylate oligomer and at least one member selected from the group consisting of acrylic amide derivatives, silane compounds and organophosphorus compounds.
摘要:
Provided is a monocrystalline silicon carbide ingot containing a dopant element, wherein a maximum concentration of the dopant element is less than 5×1017 atoms/cm3 and the maximum concentration is 50 times or less than that of a minimum concentration of the dopant element. Also provided is a monocrystalline silicon carbide wafer made by cutting and polishing the monocrystalline silicon carbide ingot, wherein a electric resistivity at room temperature of the wafer is 5×103 Ωcm or more. Further provided is a method for manufacturing the monocrystalline silicon carbide including growing the monocrystalline silicon carbide on a seed crystal from a sublimation material by a sublimation method. The sublimation material includes a solid material containing a dopant element, and the specific surface of the solid material containing the dopant element is 0.5 m2/g or less.
摘要:
The present invention provides a single-crystal silicon carbide ingot capable of providing a good-quality substrate low in dislocation defects, and a substrate and epitaxial wafer obtained therefrom.It is a single-crystal silicon carbide ingot comprising single-crystal silicon carbide which contains donor-type impurity at a concentration of 2×1018 cm−3 to 6×1020 cm−3 and acceptor-type impurity at a concentration of 1×1018 cm−3 to 5.99×1020 cm−3 and wherein the concentration of the donor-type impurity is greater than the concentration of the acceptor-type impurity and the difference is 1×1018 cm−3 to 5.99×1020 cm−3, and a substrate and epitaxial wafer obtained therefrom.
摘要翻译:本发明提供能够提供低位错缺陷的优质基板的单晶碳化硅锭,以及从其获得的基板和外延晶片。 是含有浓度为2×1018 cm -3〜6×1020cm-3的供体型杂质和1×1018浓度的受主型杂质的单晶碳化硅单晶碳化硅锭 cm-3〜5.99×1020cm-3,其中施主型杂质的浓度大于受主型杂质的浓度,差为1×1018cm-3〜5.99×1020cm-3, 从其获得的基板和外延晶片。
摘要:
The present invention provides a high resistivity, high quality, large size SiC single crystal, SiC single crystal wafer, and method of production of the same, that is, a silicon carbide single crystal containing uncompensated impurities in an atomic number density of 1 ×1015/cm3 or more and containing vanadium in an amount less than said uncompensated impurity concentration, silicon carbide single crystal wafer obtained by processing and polishing the silicon carbide single crystal and having an electrical resistivity at room temperature of 5×103 Ωcm or more, and a method of production of a silicon carbide single crystal.