Abstract:
The present disclosure provides a power module with the integration of a control circuit at least, including: a power substrate; a power device mounted on the power substrate; and at least one control substrate which supports the control circuit, is electrically connected with the power substrate and disposed at an angle of inclination on a surface of the power substrate on which the power device is mounted; wherein the angle of inclination is greater than or equal to 45 degrees and smaller than or equal to 135 degrees. In the power module provided by the present disclosure, only the power substrate as well as the connections between the control substrate and the power substrate occupies the footprint area of the power module, and thus the horizontal footprint area of the power module is effectively reduced and thereby the power density of the power module is increased.
Abstract:
The disclosure discloses a packaging module of a power converting circuit and a method for manufacturing the same. The packaging module of the power converting circuit includes a substrate, a molding layer and a plurality of pins. A power device is assembled at the substrate, a plurality of pins electrically are coupled to the power device, the molding layer covers the surface of the substrate with the power device, and at least a contact surface of the pins configured to electrically connect an external circuit is exposed. The molding layer includes a main hat-body part and a hat-brim part, the main hat-body part and the hat-brim part form a hat-shaped molding layer, and the hat-brim part is used to increase a creepage distance between the contact surfaces of the pins located at the top of the molding layer and the bottom of the substrate.
Abstract:
A power module package includes a single-layered circuit board, a first electronic component, and a second electronic component. The single-layered circuit board includes an insulating substrate and a conductive layer thereon. A bottom surface of the conductive layer touches a top surface of the insulating substrate. The insulating substrate has plural first openings to allow the conductive layer to be exposed from the bottom surface of the insulating substrate. The first electronic component is disposed on a top surface of the conductive layer. The second electronic component is disposed on the bottom surface of the insulating substrate and received in the first openings. The second electronic component is connected to the conductive layer via the first openings. At least one of the first electronic component and the second electronic component is a bare die.
Abstract:
A molding type power module includes: a leadframe including a first step and a second step; a first planar power device including a first surface having electrodes and a second surface opposite to the first surface, the electrodes being correspondingly bond to the first step respectively; and a second planar power device including a first surface having electrodes and a second surface opposite to the first surface, the electrodes being correspondingly bond to the second step respectively, wherein, the first surface of the first planar power device and the first surface of the second planar power device face each other, the projected areas thereof on a vertical direction at least partially overlap, and the first planar power device at least has one electrode electronically connected with the electrodes of the second planar power device.
Abstract:
The present disclosure discloses a package module of a power conversion circuit and a manufacturing method thereof. The package module of the power conversion circuit is surface-mountable on a system board. The package module of the power conversion circuit includes: a substrate, a power device die, a molding layer and a plurality of pins. The substrate has a metal layer, an insulating substrate layer and a thermal conductive layer. The insulating substrate layer is disposed between the metal layer and the thermal conductive layer. The power device die is coupled to the metal layer. Devices on the metal layer of the substrate are embedded in the molding layer. The plurality of pins is electrically coupled to the metal layer and embedded in the molding layer, at least a contact surface of each of the pins which is electrically coupled to the system board is exposed, and the contact surface is parallel and/or perpendicular to the thermal conductive layer. The package module with this structure occupies a small area, and facilitates batch production.
Abstract:
The disclosure discloses a power module. The power module includes a substrate, a power chip, a bonding material, and at least one spacer. The substrate includes a circuit-patterned layer. The power chip bonded to the circuit-patterned layer by the bonding material. The spacer is located between the circuit-patterned layer and the power chip, so as to keep the power chip away from the circuit-patterned layer in a distance.