摘要:
A process for removal of undesirable conductive material (e.g., catalyst material and seeped circuit material) on a circuitized substrate and the resultant circuitized substrates disclosed. Such process and resultant circuit effectively address the electrical shorting problems caused by nonremoval of the residual catalyst material and circuit material which has seeped under the residual catalyst material. The process includes the steps of: a) providing a catalyst layer (e.g., palladium and tin) having circuit pattern (e.g., copper) thereon; b) pretreating the catalyst layer and the circuit pattern (e.g., with a cyanide dip) for removal of undesirable portions of each which cause electrical leakage between circuit lines of the circuit pattern; c) oxidizing the catalyst layer and the circuit pattern (e.g., with chlorite, permanganate, hydrogen peroxide, or air at a temperature elevated above ambient conditions); and d) removing the undesirable portions of the catalyst layer and the undesirable portions of the circuit pattern (e.g., with a cyanide submersion). The resultant circuitized substrate includes a circuit pattern on a catalyst layer wherein undesirable portions of the catalyst layer and circuit pattern are completely removed between the circuit features of the circuit pattern so that electrical leakage between the circuit features does not occur.
摘要:
A process for removal of undesirable conductive material (e.g., catalyst material and seeped circuit material) on a circuitized substrate and the resultant circuitized substrates disclosed. Such process and resultant circuit effectively address the electrical shorting problems caused by nonremoval of the residual catalyst material and circuit material which has seeped under the residual catalyst material. The process includes the steps of: a) providing a catalyst layer (e.g., palladium and tin) having circuit pattern (e.g., copper) thereon; b) pretreating the catalyst layer and the circuit pattern (e.g., with a cyanide dip) for removal of undesirable portions of each which cause electrical leakage between circuit lines of the circuit pattern; c) oxidizing the catalyst layer and the circuit pattern (e.g., with chlorite, permanganate, hydrogen peroxide, or air at a temperature elevated above ambient conditions); and d) removing the undesirable portions of the catalyst layer and the undesirable portions of the circuit pattern (e.g., with a cyanide submersion). The resultant circuitized substrate includes a circuit pattern on a catalyst layer wherein undesirable portions of the catalyst layer and circuit pattern are completely removed between the circuit features of the circuit pattern so that electrical leakage between the circuit features does not occur.
摘要:
A PWB or multilayer board with circuit traces is treated by a process that serves to reduce the incident of failure of the board. The process includes the steps of applying a thin commoning layer of copper onto a catalyzed surface of the board substrate and the circuit lines. A photoresist is then applied over the commoning layer after which the photoresist is removed only from the commoning material over the circuit lines. A thin layer of a more noble metal, such as nickel, is electrodeposited over the exposed conductive layer. This is followed by a gold layer electrodeposited over the nickel in close registry therewith. The process provides the traces with a conforming nickel/gold layer that extends down the side of the traces. This reduces the tendency of a subsequent copper etch step from undercutting the nickel/gold, thereby causing slivers that could cause short circuiting between adjacent circuit patterns.
摘要:
A PWB or multilayer board with circuit traces is treated by a process that serves to reduce the incident of failure of the board. The process includes the steps of applying a thin commoning layer of copper onto a catalyzed surface of the board substrate and the circuit lines. A photoresist is then applied over the commoning layer after which the photoresist is removed only from the commoning material over the circuit lines. A thin layer of a more noble metal, such as nickel, is electrodeposited over the exposed conductive layer. This is followed by a gold layer electrodeposited over the nickel in close registry therewith. The process provides the traces with a conforming nickel/gold layer that extends down the side of the traces. This reduces the tendency of a subsequent copper etch step from undercutting the nickel/gold, thereby causing slivers that could cause short circuiting between adjacent circuit patterns.
摘要:
The present invention provides a novel method of reducing the amount of seed deposited on polymeric dielectric surfaces. The method comprises the following steps: providing a work-piece coated with a polymeric dielectric layer; baking the work-piece to modify the surface of the polymeric dielectric layer; then applying the seed to polymeric dielectric layer and electrolessly plating metal to the seed layer. The invention also relates to a circuit board produced by the method of the present invention.
摘要:
An improved method of making a circuitized substrate which may be utilized as a chip carrier structure. The method involves the steps of providing a dielectric member and partially routing this member to define a temporary support portion therein. Metallization and circuitization may then occur, following which the temporary support portion is removed, and at least one added layer of metallization is then applied to assure an entirely conductive opening between the member's opposing surfaces. The temporary support assures effective support for the dry film photoresist used as part of the circuitization process. Thus, the photoresist is capable of being applied in sheetlike form for spanning the relatively small openings of the dielectric without sagging, bowing, etc., which may adversely impact subsequent processing steps. As taught herein, the entire sidewall portions defining the opening previously occupied by the temporary support portion are metallized to provide enhanced electrical characteristics for the finished product.
摘要:
A method and arrangement for creating an impedance controlled printing wiring board, particularly the formation of a structure for high speed printed wiring boards incorporating multiple differential impedance controlled layers. Furthermore, there are provided vias of either through-holes, blind holes and buried holes filled with a conductive paste material to form electrical interconnections with conductive layers of the printed wiring board.
摘要:
A circuitized semiconductor structure comprising a layer of dielectric material, a catalyst seed layer above the layer of dielectric material, a layer of photoimageable dielectric material on the catalyst seed layer and having openings therein, a nickel layer in the openings and a layer of copper in the openings above the nickel layer and being coplanar with the top of the layer of dielectric material is provided, along with a method for its fabrication.
摘要:
Circuit boards are manufactured by forming a substrate with a dielectric surface and laminating a metal foil onto the substrate. The metal foil is patterned to form a first wiring layer. A permanent photoimagable dielectric layer is formed over the wiring layer and via holes are formed through the dielectric layer over pads and conductors of the wiring layer. Holes are formed through the substrate and substrate surfaces including the photoimagable dielectric, walls of the via holes, and walls of the through holes subjected to an electroless copper plating process. The process includes seeding the surface, coating the surface with a first solution containing surfactant and electroplating in a second solution in which the level of surfactant is regulated by determining the surface tension and metering surfactant addition to the second solution depending on the determination of surface tension. The copper plating on the photoimagable dielectric is patterned to form an exterior wiring layer which is covered by solder resist with windows over lands around the through holes and surface mount connection pads of the exterior wiring layer to form a high density circuitized substrate. Surface mount components and/or pin in hole components are attached to the circuitized substrate with solder joints between terminals of the components and the lands and/or connection pads to form a high density circuit board assembly. One or more of the circuit board assemblies are mounted in an enclosure with a power supply, CPU, RAM, and I/O means to form an information handling system with increased performance due to shorter signal flight times due to the higher device density.
摘要:
A method of making a circuitized substrate wherein a chip-accommodating cavity is formed along with a plurality of conductive elements (e.g., pads, lines, etc.) which form part of the substrate's circuitry. Metallization is facilitated by the use of a photoimageable member that allows for initial removal (peeling) of its sacrificial layer, followed by eventual removal of the photoimaging layer which also forms part of this member. Exposure of the photoimaging layer may occur either through the protective sacrificial layer or subsequent removal thereof.