摘要:
Submicron structure fabrication is accomplished by providing vapor chemical erosion of a compound crystal by suppressing the more volatile elements so that the less volatile element is provided with an anti-agglomeration and erosion rate limiting capability which can be followed by subsequent regrowth in the same environment. The erosion is sensitive to crystallographic orientation.
摘要:
A layer of an amphoteric dopant on the surface of a group III-V intermetallic semiconductor crystal will diffuse into the crystal surface in a heating cycle forming a stable contact. The contact can be ohmic or rectifying depending on the localized presence of an excess of one crystal ingredient. A layer of Si on GaAs upon heating forms a rectifying contact. When the layer of Si contains As, the contact is ohmic.
摘要:
A quantity of silicon serving as a source of the element silicon for use in a molecular beam epitaxial growth apparatus where the silicon is in the form of a monocrystalline wafer with a plurality of electrically parallel filaments separated by slots that pass completely through the wafer, each filament having a length dimension that is greater than the width and height dimensions, joined at a broad contact area at each filament end and where an electric current is passed through the filaments through the broad contact areas.
摘要:
An environmental interface for a semiconductor electro-optical conversion device layer that is optically transparent, electrically conductive and chemically passivating, made of an elemental semiconductor with an indirect band gap>1 electron volt in a layer between 20 and 200 Angstroms thick. A GaAs covered by GaAlAs converter with a 100 Angstrom Si layer over the GaAlAs is illustrated.
摘要:
When growing GaAs by molecular beam epitaxy (MBE), a typical related reaction acts to affix Ga.sub.2 O.sub.3 to the growth surface and hence incorporates such oxide contaminants in the epitaxial layer as it is grown. Such contaminants may yield crystals of poor electrical and optical properties. When Al is added to the Ga source crucible, the Ga.sub.2 O flux is reduced substantially thereby suppressing the formation of such oxide contaminants and remove a serious constraint to MBE growth. When doping GaAs with Mg to form a p-type GaAs layer, unity Mg doping efficiency is achieved by including 0.1% Al in the Ga effusion cell. Such an inclusion of Al improves the Mg doping efficiency by suppressing the formation of MgO, and allows MBE growth at lower substrate temperatures and at higher growth rates.
摘要翻译:当通过分子束外延(MBE)生长GaAs时,典型的相关反应用于将Ga 2 O 3固定到生长表面,并因此在生长时在外延层中掺入这种氧化物污染物。 这种污染物可能产生不良的电学和光学性质的晶体。 当将Al添加到Ga源坩埚中时,Ga 2 O通量显着降低,从而抑制这种氧化物污染物的形成,并消除对MBE生长的严重限制。 当用Mg掺杂形成p型GaAs层时,通过在Ga注入单元中包含0.1%的Al来实现单位Mg掺杂效率。 Al的这种包含通过抑制MgO的形成提高了Mg掺杂效率,并且允许在较低的衬底温度和较高生长速率下MBE生长。
摘要:
Heterostructures having a large lattice mismatch between an upper epilayer and a substrate and a method of forming such structures having a thin intermediate layer are disclosed. The strain due to a lattice mismatch between the intermediate layer and the substrate is partially relieved by the formation of edge type dislocations which are localized and photoelectrically inactive. Growth of the intermediate layer is interrupted before it reaches the thickness at which the left over strain is relieved by 60 degree type threading dislocations. The upper epilayer is then grown in an unstrained and defect-free condition upon the intermediate layer where the unstrained lattice constant of the epilayer is about the same as the partially relieved strain lattice constant or the intermediate layer. An unstrained defect-free epilayer of InGaAs has been grown on a GaAs substrate with an intermediate layer 3-10 nm in thickness of InAs. Other large mismatch systems are disclosed, including, GaAs on Si with an intermediate layer of GaInAs.
摘要:
Control of the Fermi level pinning problem and the production of flat band surface performance in compound semiconductors is achieved by providing a cationic oxide free of anionic species on the surface of the semiconductor for flat band performance and with a localized inclusion of some anionic species for barrier performance so that oxide and metal work function responsiveness is available in structure and performance in MOSFET, MESFET and different work function metal FET structures. A cationic gallium oxide is produced on GaAs by oxide growth during illumination and while being rinsed with oxygenated water. The oxidation is used to produce both anionic and cationic species while the rinsing process selectively removes all the anionic species.
摘要:
Control of the Fermi level pinning problem and the production of flat band surface performance in compound semiconductors is achieved by providing a cationic oxide free of anionic species on the surface of the semiconductor for flat band performance and with a localized inclusion of some anionic species for barrier performance so that oxide and metal work function responsiveness is available in structure and performance in MOSFET, MESFET and different work function metal FET structures. A cationic gallium oxide is produced on GaAs by oxide growth during illumination and while being rinsed with oxygenated water. The oxidation is used to produce both anionic and cationic species while the rinsing process selectively removes all the anionic species.
摘要:
A surface termination of a compound semiconductor is provided wherein conditions are provided for a pristine surface to be retained in an unpinned condition and a surface layer of a non-metallic material is provided. A GaAs substrate is heated in an oxygen-free atmosphere at high temperature with hydrogen sulfide, producing a pristine surface with a coating of gallium sulfide covered with a 1,000 nanometer covering of low temperature plasma enhanced chemical vapor deposited silicon dioxide.
摘要:
A semiconductor photodetector is formed of interdigitated, metal-semiconductor-metal electrodes disposed on a surface of semi-insulating semiconductor material, gallium arsenide. Radiation such as infra-red or visible light is converted to an electric current flowing between the electrodes upon application of a bias voltage between the electrodes. A Schottky barrier at the junction of each electrode surface and the semiconductor surface limits current flow to that produced by photons. Tunneling of charge carriers of the current under the Schottky barrier, which tunneling results from the entrapment of charge carriers on the semiconductor surface, is inhibited by the production of a heterojunction surface layer upon the foregoing surface between the electrodes to repulse the charge carriers and prevent their entrapment at the surface. The heterojunction layer may be doped to enhance the repulsion of charge carriers. The heterojunction surface layer is of sufficient thickness to prevent tunneling of photogenerated carriers to a noncontacted region of the surface of the heterojunction layer and to also permit efficient repulsion of charge carriers from the surface. Longer wavelength photodetectors may also be formed in this way by providing misfit dislocation regions between the interaction region, which may be GaInAs, and a GaAs substrate, thereby providing a pseudo-morphic interaction region which is graded back to a heterojunction layer at the surface.