Abstract:
A disclosed method of fabricating a hybrid nanopillar device includes forming a mask on a substrate and a layer of nanoclusters on the hard mask. The hard mask is then etched to transfer a pattern formed by the first layer of nanoclusters into a first region of the hard mask. A second nanocluster layer is formed on the substrate. A second region of the hard mask overlying a second region of the substrate is etched to create a second pattern in the hard mask. The substrate is then etched through the hard mask to form a first set of nanopillars in the first region of the substrate and a second set of nanopillars in the second region of the substrate. By varying the nanocluster deposition steps between the first and second layers of nanoclusters, the first and second sets of nanopillars will exhibit different characteristics.
Abstract:
An integrated circuit device includes a first line in a first metal layer of the integrated circuit device, wherein the first line forms at least a portion of an interconnect, a second line in a second metal layer of the integrated circuit device, and a first via that couples the first line to the second line. The integrated circuit device further includes a first stressor disposed at a first area of the interconnect, wherein the first area at least partially overlaps the first via, wherein the first stressor alters an electromigration stress profile for the interconnect by altering a stress at the first area to be less tensile.
Abstract:
A method for 3D device packaging utilizes through-hole metal post techniques to mechanically and electrically bond two or more dice. The first die includes a set of through-holes extending from a first surface of the first die to a second surface of the first die. The second die includes a third surface and a set of metal posts. The first die and the second die are stacked such that the third surface of the second die faces the second surface of the first die, and each metal post extends through a corresponding through-hole to a point beyond the first surface of the first die, electrically coupling the first die and the second die.
Abstract:
A back-end-of-line thin ion beam deposited fuse (204) is deposited without etching to connect first and second last metal interconnect structures (110, 120) formed with last metal layers (LM) in a planar multi-layer interconnect stack to programmably connect separate first and second circuit connected to the first and second last metal interconnect structures.
Abstract:
A method for forming a semiconductor structure includes forming a first metal layer over a first dielectric layer, forming a first graphene layer on at least one major surface of the first metal layer, and forming a second dielectric layer over the first metal layer and the first graphene layer. The method further includes forming an opening in the second dielectric layer which exposes the first metal layer, forming a second metal layer over the second dielectric layer and within the opening, and forming a second graphene layer on at least one major surface of the second metal layer, wherein the second graphene layer is also formed within the opening.
Abstract:
A design verification system simulates operation of an electronic device to identify one or more power characteristic vs. temperature (PC-T) curves for the electronic device. Each of the one or more PC-T curves indicates, for a particular reliability characteristic limit, a range of power characteristic values over a corresponding range of temperatures that are not expected to result in the reliability characteristic limit being exceeded. Based on the one or more PC-T curves, the design verification system sets a range of power characteristic limits, over a corresponding range of temperatures, for the electronic device. During operation, the electronic device employs a temperature sensor to measure an ambient or device temperature, and sets its power characteristic (voltage or current) according to the measured temperature and the power characteristic limits.
Abstract:
A method for forming a semiconductor structure includes forming a first metal layer over a first dielectric layer, forming a first graphene layer on at least one major surface of the first metal layer, and forming a second dielectric layer over the first metal layer and the first graphene layer. The method further includes forming an opening in the second dielectric layer which exposes the first metal layer, forming a second metal layer over the second dielectric layer and within the opening, and forming a second graphene layer on at least one major surface of the second metal layer, wherein the second graphene layer is also formed within the opening.
Abstract:
A method for 3D device packaging utilizes through-substrate metal posts to mechanically and electrically bond two or more dice. The first die includes a set of access holes extending from a surface of the first die to a set of pads at a metal layer of the first die. The second die includes a set of metal posts. The first die and the second die are stacked such that each metal post extends from a surface of the second die toward a corresponding pad via a corresponding access hole. The first die and second die are mechanically and electrically bonded via solder joints formed between the metal posts and the corresponding pads.
Abstract:
A semiconductor device includes a semiconductor substrate having a first major surface and a second major surface opposite the first major surface. A via extends through the substrate. The via is filled with conductive material and extends to at least the first major surface of the substrate. A thermal expansion inhibitor is over and in direct contact with the via proximate the first major surface. The thermal expansion inhibitor exerts a compressive stress on the conductive material closest to the thermal expansion inhibitor compared to the conductive material at a further distance from the thermal expansion inhibitor.
Abstract:
A semiconductor device includes a semiconductor substrate and a plurality of clock drivers, wherein the plurality of clock drivers comprises substantially all clock drivers of the semiconductor device, and an interconnect region over the semiconductor substrate, wherein the interconnect region comprises a plurality of heat spreaders, wherein at least 25% of the plurality of clock drivers have a corresponding heat spreader of the plurality of heat spreaders. Each corresponding heat spreader of the plurality of heat spreaders covers at least 50% of a transistor within a corresponding clock driver of the plurality of clock drivers and extends across at least 70% of a perimeter of the transistor within the corresponding clock driver.