摘要:
A method for depositing an epitaxial Ge—Sn layer on a substrate in a CVD reaction chamber includes introducing into the chamber a gaseous precursor comprising SnD4 under conditions whereby the epitaxial Ge—Sn layer is formed on the substrate. the gaseous precursor comprises SnD4 and high purity H2 of about 15-20% by volume. The gaseous precursor is introduced at a temperature in a range of about 250° C. to about 350° C. Using the process device-quality Sn—Ge materials with tunable bandgaps can be grown directly on Si substrates.
摘要:
A method for depositing an epitaxial Ge—Sn layer on a substrate in a CVD reaction chamber includes introducing into the chamber a gaseous precursor comprising SnD4 under conditions whereby the epitaxial Ge—Sn layer is formed on the substrate. the gaseous precursor comprises SnD4 and high purity H2 of about 15-20% by volume. The gaseous precursor is introduced at a temperature in a range of about 250° C. to about 350° C. Using the process device-quality Sn—Ge materials with tunable bandgaps can be grown directly on Si substrates.
摘要:
A semiconductor structure and fabrication method is provided for integrating wide bandgap nitrides with silicon. The structure includes a substrate, a single crystal buffer layer formed by epitaxy over the substrate and a group III nitride film formed by epitaxy over the buffer layer. The buffer layer is reflective and conductive. The buffer layer may comprise B an element selected from the group consisting of Zr, Hf, Al. For example, the buffer layer may comprise ZrB2, AlB2 or HfB2. The buffer layer provides a lattice match with the group m nitride layer. The substrate can comprise silicon, silicon carbide (SiC), gallium arsenide (GaAs), sapphire or Al2O3. The group m nitride material includes GaN, AIN, InN, AlGaN, InGaN or AlInGaN and can form an active region. In a presently preferred embodiment, the buffer layer is ZrB2 and the substrate is Si(111) or Si(100) and the group III nitride layer comprises GaN. The ZrB2 buffer layer provides a reflective and conductive buffer layer that has a small lattice mismatch with GaN. The semiconductor structure can be used to fabricate active microelectronic devices, such as transistors including field effect transistors and bipolar transistors. The semiconductor structure also can be used to fabricate optoelectronic devices, such as laser diodes and light emitting diodes
摘要翻译:提供了一种用于将宽带隙氮化物与硅结合的半导体结构和制造方法。 该结构包括衬底,通过衬底上的外延形成的单晶缓冲层和通过缓冲层上的外延形成的III族氮化物膜。 缓冲层是反射和导电的。 缓冲层可以包含选自由Zr,Hf,Al组成的组的元素。 例如,缓冲层可以包括ZrB 2 N 2,AlB 2 H 2或HfB 2 N 2。 缓冲层提供与第m族氮化物层的晶格匹配。 衬底可以包括硅,碳化硅(SiC),砷化镓(GaAs),蓝宝石或Al 2 O 3 3。 氮化镓族材料包括GaN,AlN,InN,AlGaN,InGaN或AlInGaN,并且可以形成有源区。 在目前优选的实施方案中,缓冲层为ZrB 2 N,衬底为Si(111)或Si(100),III族氮化物层包含GaN。 ZrB 2 N 2缓冲层提供与GaN具有小的晶格失配的反射和导电缓冲层。 半导体结构可用于制造有源微电子器件,例如包括场效应晶体管和双极晶体管的晶体管。 该半导体结构也可用于制造诸如激光二极管和发光二极管之类的光电器件
摘要:
Semiconductor structures having at least one quantum well heterostructure grown strain-free on Si(100) via a Sn1-xGex buffer layer and their uses are provided.
摘要:
A semiconductor structure including a single quantum well Ge1−x1−ySix1Sn/Ge1−x2Six2 heterostructure grown strain-free on Si(100) via a Sn1−xGex buffer layer is shown.
摘要翻译:包括单量子阱的半导体结构Ge 1-x1-y Si 1 Sn 1 / x 1 x 2 Si x 2 x 2 示出了在Si(100)上通过Sn 1-x N Ge x S x缓冲层生长无应变的异质结构。
摘要:
A novel method for synthesizing device-quality alloys and ordered phases in a Si—Ge—Sn system uses a UHV-CVD process and reactions of SnD4 with SiH3GeH3. Using the method, single-phase SixSnyGe1-x-y semiconductors (x≦0.25, y≦0.11) are grown on Si via Ge1-xSnx buffer layers The Ge1-xSnx buffer layers facilitate heteroepitaxial growth of the SixSnyGe1-x-y films and act as compliant templates that can conform structurally and absorb the differential strain imposed by the more rigid Si and Si—Ge—Sn materials. The SiH3GeH3 species was prepared using a new and high yield method that provided high purity semiconductor grade material.
摘要:
A process for is provided for synthesizing a compound having the formula E(GeH3)3 wherein E is selected from the group consisting of arsenic (As), antimony (Sb) and phosphorus (P). GeH3Br and [CH3)3Si]3E are combined under conditions whereby E(GeH3)3 is obtained. The E(GeH3)3 is purified by trap-to-trap fractionation. Yields from about 70% to about 76% can be obtained. The E(GeH3)3 can be used as a gaseous precursor for doping a region of a semiconductor material comprising Ge, SnGe, SiGe and SiGeSn in a chemical vapor deposition reaction chamber.
摘要:
A process for is provided for synthesizing a compound having the formula E(GeH3)3 wherein E is selected from the group consisting of arsenic (As), antimony (Sb) and phosphorus (P). GeH3Br and [CH3)3Si]3E are combined under conditions whereby E(GeH3)3 is obtained. The E(GeH3)3 is purified by trap-to-trap fractionation. Yields from about 70% to about 76% can be obtained. The E(GeH3)3 can be used as a gaseous precursor for doping a region of a semiconductor material comprising Ge, SnGe, SiGe and SiGeSn in a chemical vapor deposition reaction chamber.
摘要:
Photodiode devices with GeSn active layers can be integrated directly on p+ Si platforms under CMOS-compatible conditions. It has been found that even minor amounts of Sn incorporation (2%) dramatically expand the range of IR detection up to at least 1750 nm and substantially increases the absorption. The corresponding photoresponse can cover of all telecommunication bands using entirely group IV materials.