Epitaxial growth of group III nitrides on silicon substrates via a reflective lattice-matched zirconium diboride buffer layer
    3.
    发明申请
    Epitaxial growth of group III nitrides on silicon substrates via a reflective lattice-matched zirconium diboride buffer layer 有权
    通过反射晶格匹配的二硼化硼缓冲层在硅衬底上外延生长III族氮化物

    公开(公告)号:US20060236923A1

    公开(公告)日:2006-10-26

    申请号:US10545484

    申请日:2004-02-12

    摘要: A semiconductor structure and fabrication method is provided for integrating wide bandgap nitrides with silicon. The structure includes a substrate, a single crystal buffer layer formed by epitaxy over the substrate and a group III nitride film formed by epitaxy over the buffer layer. The buffer layer is reflective and conductive. The buffer layer may comprise B an element selected from the group consisting of Zr, Hf, Al. For example, the buffer layer may comprise ZrB2, AlB2 or HfB2. The buffer layer provides a lattice match with the group m nitride layer. The substrate can comprise silicon, silicon carbide (SiC), gallium arsenide (GaAs), sapphire or Al2O3. The group m nitride material includes GaN, AIN, InN, AlGaN, InGaN or AlInGaN and can form an active region. In a presently preferred embodiment, the buffer layer is ZrB2 and the substrate is Si(111) or Si(100) and the group III nitride layer comprises GaN. The ZrB2 buffer layer provides a reflective and conductive buffer layer that has a small lattice mismatch with GaN. The semiconductor structure can be used to fabricate active microelectronic devices, such as transistors including field effect transistors and bipolar transistors. The semiconductor structure also can be used to fabricate optoelectronic devices, such as laser diodes and light emitting diodes

    摘要翻译: 提供了一种用于将宽带隙氮化物与硅结合的半导体结构和制造方法。 该结构包括衬底,通过衬底上的外延形成的单晶缓冲层和通过缓冲层上的外延形成的III族氮化物膜。 缓冲层是反射和导电的。 缓冲层可以包含选自由Zr,Hf,Al组成的组的元素。 例如,缓冲层可以包括ZrB 2 N 2,AlB 2 H 2或HfB 2 N 2。 缓冲层提供与第m族氮化物层的晶格匹配。 衬底可以包括硅,碳化硅(SiC),砷化镓(GaAs),蓝宝石或Al 2 O 3 3。 氮化镓族材料包括GaN,AlN,InN,AlGaN,InGaN或AlInGaN,并且可以形成有源区。 在目前优选的实施方案中,缓冲层为ZrB 2 N,衬底为Si(111)或Si(100),III族氮化物层包含GaN。 ZrB 2 N 2缓冲层提供与GaN具有小的晶格失配的反射和导电缓冲层。 半导体结构可用于制造有源微电子器件,例如包括场效应晶体管和双极晶体管的晶体管。 该半导体结构也可用于制造诸如激光二极管和发光二极管之类的光电器件

    SixSnyGe1-x-y and related alloy heterostructures based on Si, Ge and Sn
    6.
    发明授权
    SixSnyGe1-x-y and related alloy heterostructures based on Si, Ge and Sn 失效
    SixSnyGe1-x-y和基于Si,Ge和Sn的相关合金异质结构

    公开(公告)号:US07598513B2

    公开(公告)日:2009-10-06

    申请号:US10559979

    申请日:2004-06-14

    IPC分类号: H01L29/06 H01L21/336

    摘要: A novel method for synthesizing device-quality alloys and ordered phases in a Si—Ge—Sn system uses a UHV-CVD process and reactions of SnD4 with SiH3GeH3. Using the method, single-phase SixSnyGe1-x-y semiconductors (x≦0.25, y≦0.11) are grown on Si via Ge1-xSnx buffer layers The Ge1-xSnx buffer layers facilitate heteroepitaxial growth of the SixSnyGe1-x-y films and act as compliant templates that can conform structurally and absorb the differential strain imposed by the more rigid Si and Si—Ge—Sn materials. The SiH3GeH3 species was prepared using a new and high yield method that provided high purity semiconductor grade material.

    摘要翻译: 在Si-Ge-Sn系统中合成器件质量合金和有序相的新方法使用特高压CVD法和SnD4与SiH3GeH3的反应。 使用该方法,通过Ge1-xSnx缓冲层在Si上生长单相SixSnyGe1-xy半导体(x <= 0.25,y <= 0.11)。Ge1-xSnx缓冲层促进SixSnyGe1-xy膜的异质外延生长,并作为 可以在结构上符合并吸收由更刚性的Si和Si-Ge-Sn材料施加的微分应变。 使用提供高纯度半导体级材料的新的高产率方法制备SiH 3 GeH 3物质。

    Method for preparing Ge1-x-ySnxEy (E=P, As, Sb) semiconductors and related Si-Ge-Sn-E and Si-Ge-E analogs
    7.
    发明授权
    Method for preparing Ge1-x-ySnxEy (E=P, As, Sb) semiconductors and related Si-Ge-Sn-E and Si-Ge-E analogs 有权
    Ge1-x-ySnxEy(E = P,As,Sb)半导体及相关Si-Ge-Sn-E和Si-Ge-E类似物的制备方法

    公开(公告)号:US07238596B2

    公开(公告)日:2007-07-03

    申请号:US10559980

    申请日:2004-06-14

    IPC分类号: H01L21/20 C01G17/00

    摘要: A process for is provided for synthesizing a compound having the formula E(GeH3)3 wherein E is selected from the group consisting of arsenic (As), antimony (Sb) and phosphorus (P). GeH3Br and [CH3)3Si]3E are combined under conditions whereby E(GeH3)3 is obtained. The E(GeH3)3 is purified by trap-to-trap fractionation. Yields from about 70% to about 76% can be obtained. The E(GeH3)3 can be used as a gaseous precursor for doping a region of a semiconductor material comprising Ge, SnGe, SiGe and SiGeSn in a chemical vapor deposition reaction chamber.

    摘要翻译: 提供了用于合成具有式E(GeH 3 3)3的化合物的方法,其中E选自砷(As),锑(Sb) 和磷(P)。 GeH 3 Br和[CH 3 3] 3 Si] 3 E在条件下合并,其中E(GeH 3) 3&lt; 3&gt; 3&lt; 3&gt;。 通过捕获阱捕获分级分离纯化E(GeH 3 N 3)3。 可以获得约70%至约76%的产率。 E(GeH 3 3)3 3可以用作在化学气相沉积反应中掺杂包含Ge,SnGe,SiGe和SiGeSn的半导体材料的区域的气态前体 房间。

    Method for preparing ge1-x-ysnxey (e=p, as, sb) semiconductors and related si-ge-sn-e and si-ge-e analogs
    8.
    发明申请
    Method for preparing ge1-x-ysnxey (e=p, as, sb) semiconductors and related si-ge-sn-e and si-ge-e analogs 有权
    制备ge1-x-ysnxey(e = p,as,sb)半导体及相关si-ge-sn-e和si-ge-e类似物的方法

    公开(公告)号:US20060134895A1

    公开(公告)日:2006-06-22

    申请号:US10559980

    申请日:2004-06-14

    IPC分类号: H01L21/22

    摘要: A process for is provided for synthesizing a compound having the formula E(GeH3)3 wherein E is selected from the group consisting of arsenic (As), antimony (Sb) and phosphorus (P). GeH3Br and [CH3)3Si]3E are combined under conditions whereby E(GeH3)3 is obtained. The E(GeH3)3 is purified by trap-to-trap fractionation. Yields from about 70% to about 76% can be obtained. The E(GeH3)3 can be used as a gaseous precursor for doping a region of a semiconductor material comprising Ge, SnGe, SiGe and SiGeSn in a chemical vapor deposition reaction chamber.

    摘要翻译: 提供了用于合成具有式E(GeH 3 3)3的化合物的方法,其中E选自砷(As),锑(Sb) 和磷(P)。 GeH 3 Br和[CH 3 3] 3 Si] 3 E在条件下合并,其中E(GeH 3) 3&lt; 3&gt; 3&lt; 3&gt;。 通过捕获阱捕获分级分离纯化E(GeH 3 N 3)3。 可以获得约70%至约76%的产率。 E(GeH 3 3)3 3可以用作在化学气相沉积反应中掺杂包含Ge,SnGe,SiGe和SiGeSn的半导体材料的区域的气态前体 房间。