摘要:
A method of making a microelectronic assembly includes juxtaposing a first element, such as a dielectric sheet having conductive leads thereon with a second element, such as a semiconductor chip, having contact thereon, and wire bonding the conductive leads on the first element to the contacts on the second element so that elongated bonding wires extend between the conductive leads and the contacts. After the wire bonding step, the first and second elements are moved through a pre-selected displacement relative to one another so as to deform the bonding wires. A flowable dielectric material may be introduced between the first and second elements and around the bonding wires during or after the moving step. The flowable material may be cured to form an encapsulant around at least a portion of the bonding wires.
摘要:
Multi-layer components such as circuit panels are fabricated by connecting conductive features such as traces one two or more superposed substrates using leads extending through an intermediate dielectric layer. The leads can be closely spaced to provide a high density vertical interconnection, and can be selectively connected to provide customization of the structure.
摘要:
Multilayer components such as circuit panels are fabricated by connecting conductive features such as traces one two or more superposed substrates using leads extending through an intermediate dielectric layer. The leads can be closely spaced to provide a high density vertical interconnection, and can be selectively connected to provide customization of the structure.
摘要:
An active microelectronic element such as a semiconductor chip or wafer is bonded to an interconnect element having substantially the same coefficient of thermal expansion as the active element using small, rigid bonds, desirably made by a solid-phase bonding technique, which accommodate numerous closely-spaced interconnections. The assembly is provided with terminals movable with respect to the active element and interconnect element. The interconnect element desirably provides low-impedance conductive paths interconnecting active electronic devices within the active element.
摘要:
An interconnect component comprises a compliant layer having a first surface and a plurality of electrically conductive leads having first ends and extending through the compliant layer. The first ends extend generally parallel to said first surface.
摘要:
An active microelectronic element such as a semiconductor chip or wafer is bonded to an interconnect element having substantially the same coefficient of thermal expansion as the active element using small, rigid bonds, desirably made by a solid-phase bonding technique, which accommodate numerous closely-spaced interconnections. The assembly is provided with terminals movable with respect to the active element and interconnect element. The interconnect element desirably provides low-impedance conductive paths interconnecting active electronic devices within the active element.
摘要:
A method of connecting a substrate to a semiconductor chip and component therefor to allow for the packaging of a chip even after successive die shrinks. The method compensates for successive die shrinks by providing a substrate that has connection sections of electrical leads that are releasable and/or be displaceable from a surface of the substrate as a result of a force from a bonding tool on the connection sections through at least one substrate aperture. A contact bearing surface of a semiconductor chip may then be aligned with the substrate so that the connection sections are in general alignment with the chip contacts. The connection sections may then be displaced and bonded to respective chip contacts. Other methods may be used to ensure that the chip, after die shrink, fits within the same package such as aligning the chip asymmetrically with the substrate and designing the location and dimensions of the substrate apertures so that the connection sections can be in alignment with the chip contacts.
摘要:
A method of connecting a substrate to a semiconductor chip and component therefor to allow for the packaging of a chip even after successive die shrinks. The method compensates for successive die shrinks by providing a substrate that has connection sections of electrical leads that are releasable and/or be displaceable from a surface of the substrate as a result of a force from a bonding tool on the connection sections through at least one substrate aperture. A contact bearing surface of a semiconductor chip may then be aligned with the substrate so that the connection sections are in general alignment with the chip contacts. The connection sections may then be displaced and bonded to respective chip contacts. Other methods may be used to ensure that the chip, after die shrink, fits within the same package such as aligning the chip asymmetrically with the substrate and designing the location and dimensions of the substrate apertures so that the connection sections can be in alignment with the chip contacts.
摘要:
A microelectronic component, such as a connector or a packaged semiconductor device is made by connecting multiple leads between a pair of elements and moving the elements away from one another so as to bend the leads toward a vertically extensive disposition. One of the elements includes a temporary support which is removed after the bending operation and after injecting and curing a dielectric material to form a dielectric layer surrounding and supporting the leads.
摘要:
A connection component for use in making microelectronic element assemblies which has peelable leads that are formed on a dielectric support structure. One end of each lead is permanently connected to the support structure and the opposite end of the lead is releasably connected to the support structure. When the releasable end of the lead is bonded to a contact on a semiconductor chip, the releasable end of the lead can be peeled from the support structure such that the chip may be moved away from the support structure. A compliant layer may be disposed between the chip and the support structure. If a compliant material is injected between the chip and the support structure to form the compliant layer, the compliant material will lift the chip away from the support structure and facilitate the peeling of the leads from the support structure.