摘要:
A thickness measuring system comprises: an eddy current loss measuring sensor having an exciting coil for receiving a high frequency current to excite a high frequency magnetic field to excite an eddy current in a conductive film, and a receiving coil for outputting the high frequency current which is influenced by an eddy current loss caused by the eddy current; an impedance analyzer for measuring the variation in impedance of the eddy current loss measuring sensor, the variation in current value of the high frequency current or the variation in phase of the high frequency current on the basis of the high frequency current outputted from the receiving coil; an optical displacement sensor for measuring the distance between the conductive film and the eddy current loss measuring sensor; and a control computer including a thickness calculating part for calculating the thickness of the conductive film on the basis of various measured results of the impedance analyzer and optical displacement sensor, and the eddy current loss measuring sensor further has a ferrite member surrounding the exciting coil and the ferrite member has an opening in the bottom surface portion thereof for allowing the exciting coil to be exposed.
摘要:
A semiconductor device manufacturing method comprises a step of forming a trench to a first insulation film formed on a semiconductor substrate, and forming a lower level wiring in the trench, a step of forming at least one conductive layer on the semiconductor substrate to coat the lower level wiring, a step of forming at least one thin film layer on the conductive layer, a step of forming a hard mask by patterning the thin film, a step of etching the conductive layer by using the hard mask as an etching mask, and forming a conductive pillar-shaped structure, whose upper surface is covered with the hard mask, on the lower level wiring, a step of forming a second insulation film on the semiconductor substrate so that the pillar-shaped structure is buried, a step of forming a wiring trench in which at least the hard mask is exposed, and a step of burying a conductor into the wiring trench after the hard mask is removed, and forming an upper level wiring in the wiring trench.
摘要:
After a thin liquid agent film is formed by supplying a liquid agent onto a plate-like developer holder, this liquid agent film and the surface of a substrate are opposed. The liquid agent film and the substrate are brought into contact with each other at a point by declining the substrate and moving it close to the liquid agent film, or by curving the substrate toward the liquid agent film. Then, the substrate is made parallel to the liquid agent film, and the liquid agent is supplied such that the contact area of the liquid agent film spreads over the entire surface by the interfacial tension between the liquid agent film and the substrate. Since a thin liquid agent film can be uniformly formed below the substrate, processing can be performed with a small consumption amount. Additionally, the liquid agent can be supplied to the substrate without holding air.
摘要:
A method of manufacturing a semiconductor device, which comprises the steps of forming an intermediate layer on an insulating layer, forming a groove in the intermediate layer and the insulating layer, forming a first barrier layer on the intermediate layer, depositing a wiring layer on the first barrier layer to thereby fill the groove with the wiring layer, performing a flattening treatment of the wiring layer, removing a surface portion of the wiring to thereby permit the surface of the wiring to be recessed lower than a surface of the insulating layer, thus forming a recessed portion, forming a second barrier layer on the intermediate layer and on an inner wall of the recessed portion, performing a flattening treatment of the second barrier layer, thereby, and selectively removing the intermediate layer, exposing the insulating layer.
摘要:
A method of manufacturing a semiconductor device, which comprises the steps of forming an intermediate layer on an insulating layer, forming a groove in the intermediate layer and the insulating layer, forming a first barrier layer on the intermediate layer, depositing a wiring layer on the first barrier layer to thereby fill the groove with the wiring layer, performing a flattening treatment of the wiring layer, removing a surface portion of the wiring to thereby permit the surface of the wiring to be recessed lower than a surface of the insulating layer, thus forming a recessed portion, forming a second barrier layer on the intermediate layer and on an inner wall of the recessed portion, performing a flattening treatment of the second barrier layer, thereby, and selectively removing the intermediate layer, exposing the insulating layer.
摘要:
A method of manufacturing a semiconductor device comprising the steps of forming a dummy film and a dummy gate pattern at a predetermined gate-forming region on a semiconductor substrate, forming a first side wall insulating film on a side wall of the dummy gate pattern, forming an interlayer insulating film on a portion of the semiconductor substrate around the dummy gate pattern bearing the first side wall insulating film, forming a groove by removing the dummy gate pattern, removing a portion of dummy film exposed through the groove while leaving a portion of the first side wall insulating film as well as a portion of the dummy film disposed below the portion of the first side wall insulating film, forming a gate insulating film at least on a bottom surface of the groove, and forming a gate electrode on the gate insulating film formed in the groove.
摘要:
A method of forming a cap film comprises a first polishing step of performing a polishing operation at selectivity of R1 (nullremoval rate for the cap film/removal rate for the insulating film), and a second polishing step of performing a polishing operation at selectivity of R2 (nullremoval rate for the cap film/removal rate for the insulating film). Each of the polishing operations is performed by using a slurry having the condition of R1>R2. By performing the polishing operations at different selectivity, the cap film free from problems such as dishing of the cap film and the residual cap film on side walls of a recess is formed. Consequently, a semiconductor device having an excellent RC characteristic can be provided.
摘要:
An electronic device manufacturing method comprises forming an insulating film above a substrate, forming a to-be-filled region which includes at least one of an interconnection groove and a hole in the insulating film, forming a first conductive film containing a catalyst metal which accelerates electroless plating, so as to line an internal surface of the to-be-filled region, forming a second conductive film on the first conductive film by the electroless plating, so as to line the internal surface of the to-be-filled region via the first conductive film, and forming a third conductive film on the second conductive film by electroplating, so as to fill the to-be-filled region via the first conductive film and the second conductive film.
摘要:
A method of manufacturing a semiconductor device comprising the steps of forming a dummy film and a dummy gate pattern at a predetermined gate-forming region on a semiconductor substrate, forming a first side wall insulating film on a side wall of the dummy gate pattern, forming an interlayer insulating film on a portion of the semiconductor substrate around the dummy gate pattern bearing the first side wall insulating film, forming a groove by removing the dummy gate pattern, removing a portion of dummy film exposed through the groove while leaving a portion of the first side wall insulating film as well as a portion of the dummy film disposed below the portion of the first side wall insulating film, forming a gate insulating film at least on a bottom surface of the groove, and forming a gate electrode on the gate insulating film formed in the groove.
摘要:
A cathode potential is applied to a conductive layer formed on a substrate having a depression pattern. A plating solution in electrical contact with an anode is supplied to the conductive layer to form a plating film on the conductive layer. At this time, the plating solution is supplied by causing an impregnated member containing the plating solution to face the conductive layer. Since the plating solution stays in the depression, a larger amount of plating solution is supplied than on the upper surface of the substrate, and the plating rate of the plating film in the depression increases. Consequently, the plating film can be preferentially formed in the depression such as a groove or hole.