摘要:
The present invention has objects to provide a method of lowering the unpleasant taste and/or smell of compositions, and an agent for lowering unpleasant taste and/or smell. The objects are solved by providing a method of lowering unpleasant taste and/or smell, comprising a step of incorporating an saccharide derivative of α,α-trehalose in compositions; a composition with lowered unpleasant taste and/or smell, obtainable by the method; and an agent for lowering unpleasant taste and/or smell, comprising an saccharide derivatives of α,α-trehalose as an effective ingredients.
摘要:
The present invention has objects for providing a method for inhibiting the moisture variation in compositions, a composition whose moisture variation is inhibited, and an agent for inhibiting the moisture variation in compositions. The objects are solved by providing a method for inhibiting the moisture variation in compositions comprising incorporating into a composition a saccharide-derivative(s) of α,α-trehalose as an effective ingredient, a composition whose moisture variation is inhibited by incorporating the saccharide-derivative(s), a moisture variation inhibiting agent containing the saccharide-derivative(s) as an effective ingredient, and uses thereof.
摘要:
The object of the present invention is to provide a method and a process for producing 2-O-α-glucopyranosyl-L-ascorbic acid where 5-O-α-glucopyranosyl-L-ascorbic acid and 6-O-α-glucopyranosyl-L-ascorbic acid are not formed or formed in such a small amount that the formation of these can nor be detected. The present invention solves the above object by providing a process for producing 2-O-α-glucopyranosyl-L-ascorbic acid comprising the steps of allowing α-isomaltosyl glucosaccharide-forming enzyme together with or without cyclomaltodextrin glucanotransferase (EC 2.4.1.19) to act on a solution comprising L-ascorbic acid and, an α-glucosyl saccharide to form 2-O-α-glucopyranosyl-L-ascorbic acid and collecting the formed 2-O-α-glucopyranosyl-L-ascorbic acid.
摘要:
An object of the present invention is to provide a lactosucrose high content saccharide which comprises 70% or more of lactosucrose, on a saccharide composition basis, with a lower content of 1-kestose and fructosyl lactosucrose as by-products. Another object of the present invention is to provide processes for producing a lactosucrose high content saccharide and high purity lactosucrose containing 90% or more of lactosucrose, on a saccharide composition basis, which are feasible for industrial production. Further object of the present invention is to provide a solid lactosucrose with low hygroscopicity and a solid composition comprising the same. The present invention solves above objects by providing a lactosucrose high content saccharide comprising 70% or more of lactosucrose and less than 3% of the total amount of 1-kestose and fructosyl lactosucrose, on a saccharide composition basis; a process for producing the lactosucrose high content saccharide, comprising the steps of allowing β-fructofuranosidase, derived from a microorganism belonging to the genus Bacillus, and sucrose-unassimilable yeast to contact with an aqueous solution containing sucrose and lactose to obtain a reaction mixture comprising 70% or more of lactosucrose and less than 3% of the total amount of 1-kestose and fructosyl lactosucrose and collecting the resulting lactosucrose high content saccharide; a process for producing a high purity lactosucrose, comprising the steps of subjecting the lactosucrose high content saccharide to a chromatography using a resin and collecting fractions containing 90% or more of lactosucrose, on a saccharide composition basis; a process for producing crystalline lactosucrose; and various solid compositions prepared by incorporating the crystalline lactosucrose.
摘要:
The object of the present invention is to provide an α-isomaltosylglucosaccharide-forming enzyme, process of the same, cyclotetrasaccharide, and saccharide composition comprising the saccharide which are obtainable by using the enzyme; and is solved by establishing an α-isomaltosylglucosaccharide-forming enzyme which forms a saccharide, having a glucose polymerization degree of at least three and having both the α-1,6 glucosidic linkage as a linkage at the non-reducing end and the α-1,4 glucosidic linkage other than the linkage at the non-reducing end, by catalyzing the α-glucosyl-transfer from a saccharide having a glucose polymerization degree of at least two and having the α-1,4 glucosidic linkage as a linkage at the non-reducing end without substantially increasing the reducing power; α-isomaltosyl-transferring method using the enzyme; method for forming α-isomaltosylglucosaccharide; process for producing a cyclotetrasaccharide having the structure of cyclo{66)-α-D-glucopyranosyl-(163)-α-D-glucopyranosyl-(166)-α-D-glucopyranosyl-(163)-α-D-glucopyranosyl-(16} using both the α-isomaltosylglucosaccharide-forming enzyme and the α-isomaltosyl-transferring enzyme; and the uses of the saccharides obtainable therewith.
摘要:
An object of the present invention is to provide novel methods for forming glucosyl-transferred polyalcohols, glucosyl-transferred glucuronic acid, and glucosyl-transferred derivatives of glucose whose C-6 hydroxyl group bound to a saccharide by using an enzymatic reaction. The present invention solves the above object by providing a method for transferring a glucosyl residue to polyalcohols, glucuronic acid and/or derivatives of glucose whose C-6 hydroxyl group bound to a saccharide, comprising a step of: allowing a trehalose phosphorylase to act on a saccharide containing glucose as a component sugar and one or more polyalcohols selected from the group consisting of inositol, ribitol, erythritol, and glycerol; glucuronic acid and/or a salt thereof; and/or one or more derivatives of glucose whose C-6 hydroxyl group bound to a saccharide selected from the group consisting of isomaltose, gentiobiose, melibiose, isomaltotriose, and isopanose.
摘要:
The object of the present invention is to provide an α-isomaltosyl-transferring enzyme which forms a cyclotetrasaccharide having the structure of cyclo{→6)-α-D-glucopyranosyl-(1→3)-α-D-glucopyranosyl-(1→6)-α-D-glucopyranosyl-(1→3)-α-D-glucopyranosyl-(1→} from a saccharide having a glucose polymerization degree of at least three and having both the α-1,6 glucosidic linkage as a linkage at the non-reducing end and the α-1,4 glucosidic linkage other than the linkage at the non-reducing end; microorganisms which produce the enzyme; process for producing the enzyme; cyclotetrasaccharide or saccharide compositions comprising the same; and uses thereof.
摘要:
A kojibiose phosphorylase which hydrolyzes kojibiose in the presence of an inorganic phosphoric acid to form D-glucose and .beta.-D-glucose-1-phosphoric acid, forms kojibiose and an inorganic phosphoric acid from .beta.-D-glucose-1-phosphoric acid, and catalyzes the transfer reaction of glucosyl group to other saccharides using .beta.-D-glucose-1-phosphoric acid as a saccharide donor. The enzyme is obtainable from natural sources such as microorganisms of the genus Thermoanaerobium, and obtainable by recombinant technology.
摘要:
Disclosed are novel non-reducing saccharide-forming enzyme, and its preparation and uses. The enzyme is obtainable from the culture of microorganisms such as Rhizobium sp. M-11 (FERM BP 4130) and Arthrobacter sp. Q36 (FERM BP-4316), and capable of forming non-reducing saccharides having a trehalose structure when allowed to act on reducing partial starch hydrolysates. Glucoamylase and .alpha.-glucosidase readily yield trehalose when allowed to act on the non-reducing saccharides. These non-reducing saccharides and trehalose are extensively useful in food products, cosmetics and pharmaceuticals.
摘要:
A thermostable trehalose phosphorylase which is obtainable from microorganisms of the genus Thermoanaerobium and which hydrolyzes trehalose in the presence of an inorganic phosphoric acid to form D-glucose and .beta.-D-glucose-1-phosphoric acid. The trehalose phosphorylase can be also prepared by recombinant DNA technology. When the enzyme is allowed to contact with .beta.-D-glucose-1-phosphoric acid as a saccharide donor in the presence of other saccharides, glucosyl-transferred saccharides including glucosyl-D-galactoside, which are conventionally known but scarcely obtainable, can be produced on an industrial-scale and in a relatively-low cost.