摘要:
An improved pin junction photovoltaic element which causes photoelectromotive force by the junction of a p-type semiconductor layer, an i-type semiconductor layer and an n-type semiconductor layer, characterized in that at least one of said p-type semiconductor layer and said n-type semiconductor layer comprises a p-typed or n-typed ZSnSe.sub.1-x Te.sub.x :H:M film, where M is a dopant of p-type or n-type: the quantitative ratio of the Se to the Te is in the range of from 1:9 to 3:7 in terms of atomic ratio: the amount of the H is in the range of from 1 to 4 atomic %: and said film contains crystal grain domains in a proportion of 65 to 85 vol % per unit volume; and said i-type semiconductor layer comprises a non-single crystal Si(H,F) film or a non-single crystal Si(C,Ge)(H,F) film.
摘要:
A photovoltaic element which generates photoelectromotive force by the contact of a p-type semiconductor layer and an n-type semiconductor layer, characterized in that at least one of said semiconductor layers is made up from a deposited film composed of zinc atoms, selenium atoms, optional tellurium atoms, and at least hydrogen atoms, said deposited film containing a p-type or n-type doping agent, containing 1 to 4 atomic % of hydrogen atoms, containing selenium atoms and tellurium atoms in a ratio of 1:9 to 3:7 (in terms of number of atoms), and also containing crystal grains in a ratio of 65 to 85 vol % per unit volume.
摘要:
An improved pin junction photovoltaic element which generates photoelectromotive force by the junction of a p-type semiconductor layer, an i-type semiconductor layer and an n-type semiconductor layer, characterized in that at least said i-type semiconductor layer comprises a member selected from the group consisting of a ZnSe:H deposited film containing the hydrogen atoms in an amount of 1 to 4 atomic % and crystal grain domains in a proportion of 65 to 85 vol % per unit volume and a ZnSe.sub.1-x Te.sub.x :H deposited film containing the hydrogen atoms in an amount of 1 to 4 atomic % and crystal grain domains in a proportion of 65 to 85 vol % per unit volume and also containing the selenium atoms and the tellurium atoms in a Se/Te quantitative ratio of 1:9 to 3:7.The pin junction photovoltaic element exhibits an improved photoelectric conversion efficiency for short-wavelength light and has a high open-circuit voltage. The pin junction photovoltaic element does not exhibit any undesirable light-induced fatigue even upon continuous use for a long period of time.
摘要:
There is provided a functional ZnSe:H deposited film composed of zinc atoms, selenium atoms, and at least hydrogen atoms, with the content of hydrogen atoms being 1 to 4 atomic % and the ratio of crystal grains per unit volume being 65 to 85 vol %. It is capable of efficient doping and is stable to irradiation. It can be made into a high conductivity p-type of n-type ZnSe:H:M film by doping. It can be efficiently deposited on a non-single crystal substrate such as metal, glass, and synthetic resin which was incapable of efficient depositing. Thus the invention makes it possible to form a high-functional device such as a photovoltaic element of ZnSe film on a non-single crystal substrate.
摘要:
An improved pin junction photovoltaic element which causes photoelectromotive force by the junction of a p-type semiconductor layer, an i-type semiconductor layer and an n-type semiconductor layer, characterized in that at least one of said p-type semiconductor layer and said n-type semiconductor layer comprises a p-typed or n-typed ZnSe:H:M film, where M is a dopant of p-type or n-type: the amount of the H is in the range of from 1 to 4 atomic %: and said film contains crystal grain domains in a proportion of 65 to 85 vol % per unit volume; and said i-type semiconductor layer comprises a non-single crystal Si(H,F) film or a non-single crystal Si(C,Ge)(H,F) film.
摘要:
The photovoltaic element of the present invention is a photovoltaic element comprised of a semiconductor-junctioned element, characterized in that the element includes a first electrically conductive type semiconductor layer, a non-crystalline i type semiconductor layer, a microcrystalline i type semiconductor layer and a microcrystalline second electrically conductive type semiconductor layer and is pin-junctioned, and a method of and an apparatus for manufacturing the same are characterized by efficiently and continuously mass-producing the photovoltaic element having an excellent current-voltage characteristic and excellent photoelectric conversion efficiency. Thereby, there are provided a photovoltaic element in which the junction interface between the non-crystalline i type layer and the microcrystalline electrically conductive type layer has good grating consistency and which has an excellent current-voltage characteristic and excellent photoelectric conversion efficiency, and a method of and an apparatus for continuously mass-producing the same.
摘要:
The sputtering method of the present invention comprises the steps of forming a plurality of tunnel-like magnetic fluxes on a target, forming an electric field between the target and a belt-like substrate, and conveying the belt-like substrate while reciprocating the plurality of tunnel-like magnetic fluxes at least in the direction of conveying the belt-like substrate, wherein the speed v of conveying the substrate, the distance L in the direction of conveying the belt-like substrate between two adjacent points where the magnetic field of the plurality of tunnel-like magnetic fluxes and the electric field cross each other at a right angle, and the period T of the reciprocating motion of the plurality of tunnel-like magnetic fluxes are controlled so as to L/v=(n+1/2)T wherein n is z-1/16
摘要翻译:本发明的溅射方法包括以下步骤:在目标上形成多个隧道状磁通量,在靶和带状基底之间形成电场,并且在传送带状衬底的同时使多个 至少在输送带状基板的方向上的隧道状磁通量,其中传送基板的速度v,在传送带状基板的方向上的距离L,两个相邻点之间的磁场 多个隧道状磁通和电场以直角彼此交叉,并且多个隧道状磁通的往复运动的周期T被控制为L / v =(n ++ E ,1/2 + EE)T,其中n是z- + E,fra 1/16 + EE
摘要:
The present invention aims to provide a continuous forming method and apparatus for functional deposited films having excellent characteristics while preventing any mutual mixture of gases between film forming chambers having different pressures, wherein each of semiconductor layers of desired conduction type is deposited on a strip-like substrate within a plurality of film forming chambers, by plasma CVD, while the strip-like substrate is being moved continuously in a longitudinal direction thereof through the plurality of film forming chambers connected via a gas gate having the structure of introducing a scavenging gas into a slit-like separation passage, characterized in that at least one of the gas gates connecting the i-type layer film forming chamber for forming the semiconductor junction and the n- or p-type layer film forming chamber having higher pressure than the i-type layer film forming chamber has the scavenging gas introducing position disposed on the n- or p-type layer film forming chamber side off the center of the separation chamber of the gas gate.
摘要:
A photovoltaic device comprises a semiconductor region having at least one set of semiconductor layers comprised of a first semiconductor layer having a first conductivity type, an intrinsic or substantially intrinsic second semiconductor layer, and a third semiconductor layer having a conductivity type opposite to that of the first conductivity type, the layers being formed in this order, and first and second electrodes provided such that the electrodes interpose the semiconductor region; wherein the density of a dopant impurity determining the conductivity type of the first semiconductor layer in a set of semiconductor layers which is in contact with the first electrode is varied so as to be lower on the side of the first electrode, or the grain size of crystals in the first semiconductor layer is varied so as to be smaller on the side of the first electrode. This provides a photovoltaic device that does not exhibit great lowering of characteristics even when short circuits locally occur in the semiconductor layers during long-term service.
摘要:
A process for producing a semiconductor layer by introducing a raw gas into a discharge chamber and supplying high-frequency power to the chamber to decompose the raw gas by discharge, thereby forming a semiconductor layer on a substrate within the discharge chamber, the process comprising the steps of supplying high-frequency power of at least very high frequency (VHF) as the high-frequency power; supplying bias power of direct current power and/or high-frequency power of radio-frequency (RF) together with the high-frequency power of VHF to the discharge chamber; and controlling a direct current component of an electric current flowing into an electrode, to which the bias power is supplied, so as to fall within a range of from 0.1 A/m2 to 10 A/m2 in terms of a current density based on the area of an inner wall of the discharge chamber. A good-quality semiconductor layer can be deposited over a large area at a high speed.
摘要翻译:一种制造半导体层的方法,该方法是通过将原料气体引入放电室并向室内供给高频电力,以通过放电来分解原料气体,由此在放电室内的基板上形成半导体层,该方法包括 提供至少非常高频(VHF)的高频功率作为高频功率的步骤; 将直流电力和/或射频(RF)的高频功率与VHF的高频功率一起提供给放电室; 并且以电流密度为基础控制流入施加偏压功率的电极的电流的直流分量,以0.1A / m 2至10A / m 2的范围内 放电室内壁面积。 高质量的半导体层可以在大面积上高速沉积。