摘要:
Gate conductors on an integrated circuit are formed with enlarged upper portions which are utilized to electrically connect the gate conductors with other devices. A semiconductor device comprises a gate conductor with an enlarged upper portion which electrically connects the gate conductor to a local diffusion region. Another semiconductor device comprises two gate conductors with enlarged upper portions which merge to create electrically interconnected gate conductors. Methods for forming the above semiconductor devices are also described and claimed.
摘要:
A method and apparatus, is herein disclosed, for adjusting capacitance of an on-chip capacitor formed on a substrate. A plurality of conductive layers is separated by a layer ofdielectric material. The dielectric material of the capacitor is exposed to an ion beam. The ion beam includes ions of at least one material to modify a dielectric constant of the dielectric material.
摘要:
A method and apparatus for adjusting capacitance of an on-chip capacitor uses exposure of a dielectric material of the capacitor to an ion beam comprising ions of at least one material to modify a dielectric constant of the dielectric material.
摘要:
A method of making a diffusion barrier for a interconnect structure. The method comprises: providing a conductive line in a bottom dielectric trench; depositing a sacrificial liner on the cap layer; depositing an interlayer dielectric; forming a trench and a via in the top interlayer dielectric; and removing a portion of the cap layer and the sacrificial layer proximate to the bottom surface of the via. The removed portions of the cap layer and sacrificial layer deposit predominantly along the lower sidewalls of the via. The conductive line is in contact with a cap layer, and the sacrificial layer is in contact with the cap layer. The invention is also directed to the interconnect structures resulting from the inventive process.
摘要:
A PCM cell structure comprises a first electrode, a phase change element, and a second electrode, wherein the phase change element is inserted in between the first electrode and the second electrode and only the peripheral edge of the first electrode contacts the phase change element thereby reducing the contact area between the phase change element and the first electrode and thereby increasing the current density through the phase change element and effectively inducing the phase change at lower levels of current and reduced programming power.
摘要:
A PCM cell structure comprises a first electrode, a phase change element, and a second electrode, wherein the phase change element is inserted in between the first electrode and the second electrode and only the peripheral edge of the first electrode contacts the phase change element thereby reducing the contact area between the phase change element and the first electrode and thereby increasing the current density through the phase change element and effectively inducing the phase change at lower levels of current and reduced programming power.
摘要:
A non-photosensitive polymeric resist containing at least two immiscible polymeric block components is deposited on the planar surface. The non-photosensitive polymeric resist is annealed to allow phase separation of immiscible components and developed to remove at least one of the at least two polymeric block components. Nanoscale features, i.e., features of nanometer scale, including at least one recessed region having a nanoscale dimension is formed in the polymeric resist. The top surface of the polymeric resist is modified for enhanced etch resistance by an exposure to an energetic beam, which allows the top surface of the patterned polymeric resist to become more resistant to etching processes and chemistries. The enhanced ratio of etch resistance between the two types of surfaces provides improved image contrast and fidelity between areas having the top surface and the at least one recessed region.
摘要:
A method and structure for producing metallic polymer conductor lines comprising of an alternative methodology to a traditional damascene approach, called a cloisonne or inverse damascene approach. The cloisonne approach comprises the steps of coating a photosensitive polymer such as pyrrole or aniline with a silver salt on a semiconductor substrate. Using standard photolithography and resist developing techniques, the conducting polymer is exposed to a wet chemical developer, removing a portion of the exposed conducting polymer region, leaving only conducting polymer lines on top of the substrate. Next, an insulating dielectric layer is deposited over the entire structure and a chemical mechanical polish planarization of the insulator is performed creating the conducting polymer lines. Included in another aspect of the invention is a method and structure for a self-planarizing interconnect material comprising a conductive polymer thereby reducing the number of processing steps relative to the prior art.
摘要:
An epitaxial semiconductor layer or a stack of a silicon germanium alloy layer and an epitaxial strained silicon layer is formed on outer sidewalls of a porous silicon portion on a substrate. The porous silicon portion and any silicon germanium alloy material are removed and a semitubular epitaxial semiconductor structure in a three-walled configuration is formed. A semitubular field effect transistor comprising inner and outer gate dielectric layers, an inner gate electrode, an outer gate electrode, and source and drain regions is formed on the semitubular epitaxial semiconductor structure. The semitubular field effect transistor may operate as an SOI transistor with a tighter channel control through the inner and outer gate electrodes, or as a memory device storing electrical charges in the body region within the semitubular epitaxial semiconductor structure.
摘要:
Thermal cooling structures of diamond or diamond-like materials are provided for conducting heat away from semiconductor devices. A first silicon-on-insulator embodiment comprises a plurality of thermal paths, formed after shallow trench and device fabrication steps are completed, which extend through the buried oxide and provide heat dissipation through to the underlying bulk silicon substrate. The thermal conduction path material is preferably diamond which has high thermal conductivity with low electrical conductivity. A second diamond trench cooling structure, formed after device fabrication has been completed, comprises diamond shallow trenches disposed between the devices and extending through the buried oxide layer. An alternative diamond thermal cooling structure includes a diamond insulation layer deposited over the semiconductor devices in either an SOI or bulk silicon structure. Yet another embodiment comprises diamond sidewalls formed along the device walls in thermal contact with the device junctions to provide heat dissipation through the device junctions to underlying cooling structures. It is also proposed that the foregoing structures, and combinations of the foregoing structures, could be used in conjunction with other known cooling schemes.