摘要:
An electrically powered device includes a shell, and a battery integrated with the shell. The electrically powered device also includes a trace, and a site adapted to receive an electrically powered component, wherein the battery, the trace and the electrically powered component form a portion of a circuit. The electrically shell may be a portion of an enclosure. The battery is formed within the shell and may be comprised of one or a plurality of deposited layers.
摘要:
A method and system for fabricating solid-state energy-storage and energy-conversion devices including fabrication of films for devices without an anneal step, especially for the fabrication of supercapacitors and photovoltaic cells. A film is fabricated by depositing a first material layer to a location. Energy is supplied directly to the material forming the film. The energy can be in the form of energized ions of a second material. Supplying energy directly to the material and/or the film being deposited assists the growth of the crystalline structure of the film and controls stoichiometry.
摘要:
A system includes a thin-film battery and an activity-activated switch. In some embodiments, the system is placed on a substrate with an adhesive backing. In some embodiments, the substrate is flexible. Also formed on the substrate is an electrical circuit that includes electronics. The activity-activated switch places the thin-film battery in electrical communication with the circuit and electronics. The battery and the circuit are formed on the substrate and may be comprised of one or a plurality of deposited layers.
摘要:
A combined battery and device apparatus and associated method. This apparatus includes a first conductive layer, a battery comprising a cathode layer; an anode layer, and an electrolyte layer located between and electrically isolating the anode layer from the cathode layer, wherein the anode or the cathode or both include an intercalation material, the battery disposed such that either the cathode layer or the anode layer is in electrical contact with the first conductive layer, and an electrical circuit adjacent face-to-face to and electrically connected to the battery. Some embodiments further include a photovoltaic cell and/or thin-film capacitor. In some embodiments, the substrate includes a polymer having a melting point substantially below 700 degrees centigrade. In some embodiments, the substrate includes a glass. For example, some embodiments include a battery deposited directly on the back of a liquid-crystal display (LCD) device.
摘要:
A method and apparatus for making lithium/air batteries with LiPON as separator and protective barrier, and the resulting cell(s) and/or battery(s). Some embodiments include an apparatus that includes a lithium anode; a polymer-air cathode; and a LiPON separator between the anode and cathode. In some embodiments, the polymer-air cathode includes a carbon-polyfluoroacrylate material. In some embodiments, the anode overlays a copper anode contact.
摘要:
A method for producing a thin film lithium battery is provided, comprising applying a cathode current collector, a cathode material, an anode current collector, and an electrolyte layer separating the cathode material from the anode current collector to a substrate, wherein at least one of the layers contains lithiated compounds that is patterned at least in part by a photolithography operation comprising removal of a photoresist material from the layer containing lithiated compounds by a process including a wet chemical treatment. Additionally, a method and apparatus for making lithium batteries by providing a first sheet that includes a substrate having a cathode material, an anode material, and a LiPON barrier/electrolyte layer separating the cathode material from the anode material; and removing a subset of first material to separate a plurality of cells from the first sheet. In some embodiments, the method further includes depositing second material on the sheet to cover the plurality of cells; and removing a subset of second material to separate a plurality of cells from the first sheet.
摘要:
A method and apparatus for making lithium/air batteries with LiPON as separator and protective barrier, and the resulting cell(s) and/or battery(s). Some embodiments include an apparatus that includes a lithium anode; a polymer-air cathode; and a LiPON separator between the anode and cathode. In some embodiments, the polymer-air cathode includes a carbon-polyfluoroacrylate material. In some embodiments, the anode overlays a copper anode contact.
摘要:
A method and apparatus for making thin-film batteries having composite multi-layered electrolytes with soft electrolyte between hard electrolyte covering the negative and/or positive electrode, and the resulting batteries. In some embodiments, foil-core cathode sheets each having a cathode material (e.g., LiCoO2) covered by a hard electrolyte on both sides, and foil-core anode sheets having an anode material (e.g., lithium metal) covered by a hard electrolyte on both sides, are laminated using a soft (e.g., polymer gel) electrolyte sandwiched between alternating cathode and anode sheets. A hard glass-like electrolyte layer obtains a smooth hard positive-electrode lithium-metal layer upon charging, but when very thin, have randomly spaced pinholes/defects. When the hard layers are formed on both the positive and negative electrodes, one electrode's dendrite-short-causing defects on are not aligned with the other electrode's defects. The soft electrolyte layer both conducts ions across the gap between hard electrolyte layers and fills pinholes.
摘要:
A method and apparatus for making thin-film batteries having composite multi-layered electrolytes with soft electrolyte between hard electrolyte covering the negative and/or positive electrode, and the resulting batteries. In some embodiments, foil-core cathode sheets each having a cathode material (e.g., LiCoO2) covered by a hard electrolyte on both sides, and foil-core anode sheets having an anode material (e.g., lithium metal) covered by a hard electrolyte on both sides, are laminated using a soft (e.g., polymer gel) electrolyte sandwiched between alternating cathode and anode sheets. A hard glass-like electrolyte layer obtains a smooth hard positive-electrode lithium-metal layer upon charging, but when very thin, have randomly spaced pinholes/defects. When the hard layers are formed on both the positive and negative electrodes, one electrode's dendrite-short-causing defects on are not aligned with the other electrode's defects. The soft electrolyte layer both conducts ions across the gap between hard electrolyte layers and fills pinholes.
摘要:
A method and apparatus for making thin-film batteries having composite multi-layered electrolytes with soft electrolyte between hard electrolyte covering the negative and/or positive electrode, and the resulting batteries. In some embodiments, foil-core cathode sheets each having a cathode material (e.g., LiCoO2) covered by a hard electrolyte on both sides, and foil-core anode sheets having an anode material (e.g., lithium metal) covered by a hard electrolyte on both sides, are laminated using a soft (e.g., polymer gel) electrolyte sandwiched between alternating cathode and anode sheets. A hard glass-like electrolyte layer obtains a smooth hard positive-electrode lithium-metal layer upon charging, but when very thin, have randomly spaced pinholes/defects. When the hard layers are formed on both the positive and negative electrodes, one electrode's dendrite-short-causing defects on are not aligned with the other electrode's defects. The soft electrolyte layer both conducts ions across the gap between hard electrolyte layers and fills pinholes.