Abstract:
An optoelectronic arrangement having a radiation conversion element and a method for producing a radiation conversion element are disclosed. In an embodiment, an optoelectronic arrangement includes a semiconductor chip having an active region configured to generate radiation, a radiation conversion element arranged downstream of the semiconductor chip in an emission direction and a reflective polarization element arranged downstream of the radiation conversion element in the emission direction. The radiation conversion element has a plurality of conversion elements, each of which has an axis of symmetry, the spatial orientation of the axes of symmetry has a preferred direction and a radiation emitted by the radiation conversion element has a preferred polarization. The reflective polarization element largely allows radiation with the preferred polarization to pass through and largely reflects radiation polarized perpendicularly to the preferred polarization.
Abstract:
An optoelectronic semiconductor chip includes a number active regions that are arranged at a distance from each other and a substrate that is arranged on an underside of the active regions. One of the active regions has a main extension direction. The active region has a core region that is formed using a first semiconductor material. The active region has an active layer that covers the core region at least in directions perpendicular to the main extension direction of the active region. The active region has a cover layer that is formed using a second semiconductor material and covers the active layer at least in directions perpendicular to the main extension direction of the active region.
Abstract:
An assembly has a columnar structure arranged with one end on a substrate, wherein the structure is at least partly covered with a semiconductor layer structure having an active zone that generates electromagnetic radiation, the active zone has a band gap for a radiative recombination, and the band gap decreases along a longitudinal axis of the structure in a direction of a free end of the structure such that a diffusion of charge carriers in the direction of the free end of the structure and a radiative recombination of charge carrier pairs in the region of the free end of the structure are supported.
Abstract:
An optoelectronic semiconductor chip and a method for manufacturing a semiconductor chip are disclosed. In an embodiment an optoelectronic semiconductor chip includes a plurality of fins and a current expansion layer for common contacting of at least some of the fins, wherein each fin includes two side surfaces arranged opposite one another and an active region arranged on each of the side surfaces, wherein the plurality of fins include inner fins and outer fins having an adjacent fin only on one side, and wherein the current expansion layer is in direct contact with the inner fins on their outside.
Abstract:
An optoelectronic semiconductor chip and a method for manufacturing a semiconductor chip are disclosed. In an embodiment an optoelectronic semiconductor chip includes a plurality of fins and a current expansion layer for common contacting of at least some of the fins, wherein each fin includes two side surfaces arranged opposite one another and an active region arranged on each of the side surfaces, wherein the plurality of fins include inner fins and outer fins having an adjacent fin only on one side, and wherein the current expansion layer is in direct contact with the inner fins on their outside.
Abstract:
An assembly includes a carrier and a structure having a core formed on the carrier, wherein the core has a longitudinal extension having two end regions, a first end region is arranged facing the carrier and a second end region is arranged facing away from the carrier, the core is formed as electrically conductive at least in an outer region, the region is at least partially covered with an active zone layer, the active zone layer generates electromagnetic radiation, a mirror layer is provided at least in one end region of the core to reflect electromagnetic radiation in a direction, a first electrical contact layer contacts an electrically conductive region of the core, and a second contact layer contacts the active zone layer.
Abstract:
An optoelectronic semiconductor chip includes a number of active elements arranged at a distance from one another. A carrier is arranged transversely of the active elements. The active elements each have a main axis that extends perpendicularly to the carrier and are oriented parallel to one another. A converter material surrounds the active elements on circumferential faces. The converter material includes a conversion substance or a conversion substance and a matrix material. The active elements each have a central core region that is enclosed by at least two layers such that an active layer encloses the core region and a cover layer encloses the active layer. The core region is formed with a first semiconductor material. The active layer includes a light-emitting material. The cover layer is formed with a second semiconductor material and can have a layer thickness between 0.1 nm and 100 n.