Abstract:
An organic electronic device and a method of making an organic electronic device are provided. An embodiment of an electronic device includes a substrate, an active layer disposed on the substrate and a thin-layer encapsulation disposed on the active layer. The device further includes a first adhesive layer disposed on the thin-layer encapsulation, wherein the first adhesive layer comprises a getter material and a covering layer disposed on the first adhesive layer.
Abstract:
A method for producing an electronic component with at least one first electrode zone (21) and one second electrode zone (23), which are separated from one another by an insulator (9) and each comprise at least one sublayer of a first electrically conductive material. Also disclosed is an electronic component, which may be produced using the disclosed method.
Abstract:
An electroluminescent organic semiconductor element includes a substrate and a first electrode arranged on the substrate. The semiconductor element additionally contains a second electrode and at least one organic layer, which is arranged between the first electrode and the second electrode. The organic layer is a layer that generates light by recombination of charge carriers. At least one of the first and the second electrode contains a highly conductive organic sublayer.
Abstract:
An optoelectronic component includes at least one inorganic optoelectronically active semiconductor component having an active region that emits or receives light during operation, and a sealing material directly applied by atomic layer deposition, wherein the semiconductor component is applied on a carrier, the carrier includes electrical connection layers, the semiconductor component electrically connects to one of the electrical connection layers via an electrical contact element, and the sealing material completely covers in a hermetically impermeable manner and directly contacts all exposed surfaces including sidewall and bottom surfaces of the semiconductor component and the electrical contact element and all exposed surfaces of the carrier apart from an electrical connection region of the carrier.
Abstract:
A method for producing an electronic component with at least one first electrode zone (21) and one second electrode zone (23), which are separated from one another by an insulator (9) and each comprise at least one sublayer of a first electrically conductive material. Also disclosed is an electronic component, which may be produced using the disclosed method.
Abstract:
Various embodiments may relate to a method for producing an optoelectronic component. The method may include providing an optoelectronic component comprising a dielectric layer on or above an electrically conductive layer, wherein the dielectric layer is designed for sealing the electrically conductive layer substantially hermetically impermeably with regard to water, wherein the dielectric layer has diffusion channels, and closely closing the dielectric layer, wherein at least some of the diffusion channels in the dielectric layer are closed.
Abstract:
Various embodiments may relate to a method for producing an optoelectronic component. The method may include providing an optoelectronic component comprising a dielectric layer on or above an electrically conductive layer, wherein the dielectric layer is designed for sealing the electrically conductive layer substantially hermetically impermeably with regard to water, wherein the dielectric layer has diffusion channels, and closely closing the dielectric layer], wherein at least some of the diffusion channels in the dielectric layer are closed.
Abstract:
An organic electronic device and a method of making an organic electronic device are provided. An embodiment of an electronic device includes a substrate, an active layer disposed on the substrate and a thin-layer encapsulation disposed on the active layer. The device further includes a first adhesive layer disposed on the thin-layer encapsulation, wherein the first adhesive layer comprises a getter material and a covering layer disposed on the first adhesive layer.
Abstract:
An electroluminescent organic semiconductor element includes a substrate and a first electrode arranged on the substrate. The semiconductor element additionally contains a second electrode and at least one organic layer, which is arranged between the first electrode and the second electrode. The organic layer is a layer that generates light by recombination of charge carriers. At least one of the first and the second electrode contains a highly conductive organic sublayer.
Abstract:
An optoelectronic device and a method for producing an optoelectronic device are disclosed. The optoelectronic device includes an optoelectronic semiconductor chip and a conversion element arranged on the optoelectronic semiconductor chip. The conversion element includes a matrix material which includes a glass frit, a first phosphor, embedded in the glass frit, and cavities and a second phosphor arranged in the cavities of the matrix material.