Abstract:
A semiconductor device includes a first element disposed in a first region and including a high-dielectric-constant insulating film, a second element disposed in a second region, and an element isolation portion disposed between the first region and the second region and electrically isolating between the first element and the second element. A step portion is formed on the surface of the element isolation portion. The semiconductor device further includes a dummy pattern that straddles the step portion. The dummy pattern includes a first high-dielectric-constant insulating film and a conductive film covering the upper surface of the first high-dielectric-constant insulating film. The first high-dielectric-constant insulating film is exposed from both side surfaces of the dummy pattern. The semiconductor device further includes a sidewall insulating film covering the first high-dielectric-constant insulating film exposed from both side surfaces of the dummy pattern.
Abstract:
A semiconductor device includes semiconductor substrate having outer peripheral sides in plan view, and at least a pair of first bonding pad and second bonding pad formed over the semiconductor substrate. The second bonding pad has a shape obtained by rotating the first bonding pad by 180 degrees in plan view. The first bonding pad and the second bonding pad are arranged so as to face each other in a first direction crossing the outer peripheral side. The first bonding pad has a first portion and a second portion of rectangular shape in the second direction along the outer peripheral side. A width of the first portion in the first direction is greater than a width of the second portion in the first direction.
Abstract:
A pad formed in a semiconductor chip is formed such that a thickness of an aluminum film in a wire bonding portion is smaller than that of an aluminum film in a peripheral portion covered with a protective film. On the other hand, a thickness of a wiring formed in the same step as the pad is larger than that of the pad in the wire bonding portion. The main conductive film of the pad in the wire bonding portion is comprised of only one layer of a first aluminum film, while the main conductive film of the wiring is comprised of at least two layers of aluminum films (the first aluminum film and a second aluminum film) in any region of the wiring.
Abstract:
In manufacturing an LSI, or semiconductor integrated circuit device, the step of assembling device (such as resin sealing step) is normally followed by a voltage-application test in an environment of high temperature (e.g., from 85 to 130° C.) and high humidity (e.g., about 80% RH). It has been found that separation of a titanium nitride anti-reflection film from an upper film and generation of cracks in the titanium nitride film at an upper surface edge part of the aluminum-based bonding pad applied with a positive voltage in the test is caused by an electrochemical reaction due to moisture incoming through the sealing resin and the like to generate oxidation and bulging of the titanium nitride film. These problems are addressed by removing the titanium nitride film over the pad in a ring or slit shape at peripheral area of the aluminum-based bonding pad.
Abstract:
A pad electrode is formed in an uppermost wiring layer of a multilayer wiring layer formed on a semiconductor substrate. A dielectric film is formed to cover the pad electrode. An opening portion is formed in the dielectric film so as to reach the pad electrode. In the opening portion, a conductive film that is a part of a conductive layer is electrically connected to the pad electrode. On a side surface of the conductive film, an oxide layer in which a material contained in the conductive film is oxidized is formed. A width of the oxide layer is 200 nm or more.
Abstract:
A semiconductor device and a method for manufacturing the semiconductor device which ensure improved reliability, permit further miniaturization, and suppress the increase in manufacturing cost. The semiconductor device includes: a pad electrode formed in the uppermost wiring layer of a multilayer wiring layer formed over a semiconductor substrate; a surface protective film formed in a manner to cover the pad electrode; an opening made in the surface protective film in a manner to expose the pad electrode partially; and a conductive layer formed over the pad electrode exposed at the bottom of the opening. The thickness of the conductive layer formed over the pad electrode is smaller than the thickness of the surface protective film formed over the pad electrode.