摘要:
An optoelectronic package is fabricated by a method which includes: positioning an optical device within a window of a substrate active-side up and below a top substrate surface; filling the window with an optical polymer material; planarizing surfaces of the optical polymer material and the substrate; patterning waveguide material over the optical polymer material and the substrate to form an optical interconnection path; and to form a mirror to reflect light from the optical device to the interconnection path; and forming a via to expose a bond pad of the optical device.
摘要:
A chip package is disclosed that includes an electronic chip having a plurality of die pads formed on a top surface thereof, with a polyimide flex layer positioned thereon by way of an adhesive layer. A plurality of vias is formed through the polyimide flex layer and the adhesive layer corresponding to the die pads. A plurality of metal interconnects are formed on the polyimide flex layer each having a cover pad covering a portion of a top surface of the polyimide flex layer, a sidewall extending down from the cover pad and through the via along a perimeter thereof, and a base connected to the sidewall and forming an electrical connection with a respective die pad. Each of the base and the sidewall is formed to have a thickness that is equal to or greater than a thickness of the adhesive layer.
摘要:
Present embodiments are directed to an adhesive and method for assembling a chip package. The adhesive may be used to couple a chip to a substrate, and the adhesive may include an epoxy-based dielectric material, an epoxy resin, a photoacid generator, an antioxidant, and a cold catalyst corresponding to the photoacid generator.
摘要:
A chip package is disclosed that includes an electronic chip having a plurality of die pads formed on a top surface thereof, with a polyimide flex layer positioned thereon by way of an adhesive layer. A plurality of vias is formed through the polyimide flex layer and the adhesive layer corresponding to the die pads. A plurality of metal interconnects are formed on the polyimide flex layer each having a cover pad covering a portion of a top surface of the polyimide flex layer, a sidewall extending down from the cover pad and through the via along a perimeter thereof, and a base connected to the sidewall and forming an electrical connection with a respective die pad. Each of the base and the sidewall is formed to have a thickness that is equal to or greater than a thickness of the adhesive layer.
摘要:
Present embodiments are directed to an adhesive and method for assembling a chip package. The adhesive may be used to couple a chip to a substrate, and the adhesive may include an epoxy-based dielectric material, an epoxy resin, a photoacid generator, an antioxidant, and a cold catalyst corresponding to the photoacid generator.
摘要:
A method for molding an optical disk comprises: applying a thermally insulative insert coating to at least one thermally insulative mold insert to provide at least one coated mold insert having a reduced surface roughness; positioning the coated mold insert between a thermally conductive mold form and a portion of a thermally conductive mold apparatus; injecting a molten thermoplastic material into the mold apparatus; retaining the material in the mold apparatus for a time sufficient for the molten thermoplastic material to cool below its glass transition temperature to form the optical disk; and ejecting the optical disk from the mold apparatus. In another embodiment, the mold insert is coated or laminated on the mold form with the mold insert having a coefficient of thermal expansion compatible with the coefficient of thermal expansion of the mold form. In another embodiment, the mold insert is fabricated by being applied, cured, and then removed from a release layer.
摘要:
There is provided a flexible circuit module, including at least one rigid carrier, at least one solid state device mounted over a first side of the at least one rigid carrier, a flexible base supporting a second side of the at least one rigid carrier, a conductive interconnect pattern on the flexible base, and a plurality of feed through electrodes extending from the first side to the second side of the at least one rigid carrier and electrically connecting the conductive interconnect pattern with the at least one of a plurality of the solid state devices. The solid state devices may be LED chips to form an LED array module.
摘要:
There is provided a flexible circuit module, including at least one rigid carrier, at least one solid state device mounted over a first side of the at least one rigid carrier, a flexible base supporting a second side of the at least one rigid carrier, a conductive interconnect pattern on the flexible base, and a plurality of feed through electrodes extending from the first side to the second side of the at least one rigid carrier and electrically connecting the conductive interconnect pattern with the at least one of a plurality of the solid state devices. The solid state devices may be LED chips to form an LED array module.
摘要:
There is provided a flexible circuit module, including at least one rigid carrier, at least one solid state device mounted over a first side of the at least one rigid carrier, a flexible base supporting a second side of the at least one rigid carrier, a conductive interconnect pattern on the flexible base, and a plurality of feed through electrodes extending from the first side to the second side of the at least one rigid carrier and electrically connecting the conductive interconnect pattern with the at least one of a plurality of the solid state devices. The solid state devices may be LED chips to form an LED array module.
摘要:
A system and method for providing shielding to an electrical system is disclosed. A conformal shield is formed by applying a conformal insulating coating to an electrical system. A plurality of openings are formed in the insulating coating at desired locations and a first metallic layer is deposited over the insulating coating and in each of the plurality of openings, the first metallic layer being electrically connected with the circuit board at the desired locations. A second metallic layer is then deposited onto the first metallic layer to increase a thickness of the metallic layers.